
Tru64 UNIX
NUMA Overview

Part Number: AA-NUMAG-DE

January 2001

Operating System and Version: Tru64 UNIX Version 5.1 or higher

This document introduces the operating system features that support
Non-Uniform Memory Access (NUMA) and explains when and how they
are used.

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

COMPAQ, the Compaq logo, and AlphaServer Registered in U.S. Patent and Trademark Office. Tru64 is a
trademark of Compaq Information Technologies Group, L.P.

Microsoft Windows and Windows NT are trademarks of Microsoft Corporation. UNIX and The Open
Group are registered trademarks of The Open Group. All other product names mentioned herein may be
trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information
in this document is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND. THE ENTIRE RISK ARISING OUT OF THE USE OF THIS INFORMATION REMAINS WITH
RECIPIENT. IN NO EVENT SHALL COMPAQ BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL,
INCIDENTAL, SPECIAL, PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION OR LOSS
OF BUSINESS INFORMATION), EVEN IF COMPAQ HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES AND WHETHER IN AN ACTION OF CONTRACT OR TORT, INCLUDING
NEGLIGENCE.

The limited warranties for Compaq products are exclusively set forth in the documentation accompanying
such products. Nothing herein should be construed as constituting a further or additional warranty.

Contents

Preface

1 NUMA Concepts
1.1 RADs and QBBs 1–2
1.2 RADs and Partitioning 1–6
1.3 RADs, Resource Allocation, and Process Scheduling 1–7

2 NUMA-Aware Applications
2.1 Default NUMA-Aware Behavior of the Operating System 2–1
2.2 NUMA APIs for User Applications 2–2
2.3 NUMA Memory Management Policies 2–11

A The radtool Program

Index

Examples
A–1 Source File for the radtool Program A–2
A–2 Header File for the radtool Program A–7
A–3 Makefile for the radtool Program A–7

Figures
1–1 QBBs 1–3
1–2 RAD/QBB Mapping 1–4
1–3 Partitioned NUMA System 1–6

Tables
2–1 RADs and RAD Sets 2–5
2–2 CPUs and CPU Sets 2–7
2–3 NUMA Scheduling Groups 2–8
2–4 Processes and Threads 2–9

Contents iii

2–5 Memory Management 2–10

iv Contents

Preface

This is a post-release document that is currently available only on line,
in HTML and PDF formats, at the Compaq Tru64™ UNIX web site. This
document is not orderable in printed form nor is it included on the Tru64
UNIX Version 5.1 documentation CD-ROM.

If you are using a web browser to read the HTML version of this document,
you can click on documentation cross-references to display them. Some
cross-references are to different sections of this document and some
cross-references are to reference pages included in the Tru64 UNIX Version
5.1 documentation set. The reference pages display in a different window
from sections in this document. You can therefore navigate among sections
of this document in one window and from one reference page to another in
the supplementary window.

Audience

This document is aimed at system administrators and programmers who
will be using Tru64 UNIX Version 5.1 on NUMA platforms (GS80, GS160,
and GS320 AlphaServer systems).

Conventions

This document uses the following conventions:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside

Preface v

brackets or braces indicate that you choose one item
from among those listed.

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

vi Preface

1
NUMA Concepts

On traditional multiprocessor systems, there is one interconnect, either a
bus or a switch, that links all system resources. This means that all CPUs
in the system are subject to the same latency and bandwidth restrictions
with respect to accessing the system’s memory and I/O channels. Uniform
Memory Access (UMA) is a term sometimes used to describe the system
architecture in which all CPUs access memory and I/O by using the same
bus or switch. This document refers to systems that use UMA architecture
as traditional symmetric multiprocessor (SMP) systems.

The drawback of the architecture of traditional SMP systems is that scaling
the system to large numbers of CPUs causes the system bus to become a
performance bottleneck. One way to address this bottleneck is to design a
system built from SMP blocks (each with a limited number of CPUs, memory
arrays, and I/O ports) and add a second-level bus or switch to connect the
blocks. Non-Uniform Memory Access (NUMA) is the term used to describe
this type of system architecture because it results in bandwidth and latency
differences, depending on whether a particular CPU accesses memory and
I/O resources locally (in the same building block where the CPU resides) or
remotely (in another building block).

Hardware Requirements for NUMA Support

The first NUMA implementations did not support cache coherency between
the system building blocks, only within them. On these early NUMA
implementations, software was responsible for ensuring cache coherency
when a CPU accessed memory in any building block other than the one in
which the CPU was located.

The GS80, GS160, and GS320 AlphaServer systems are the first Alpha
implementations of cache-coherent NUMA (CC-NUMA) systems, meaning
that the system hardware handles cache coherency between the system
building blocks as well as within them. Therefore, software is relieved of
this responsibility. The operating system and user applications can treat a
CC-NUMA system the same way they treat a traditional SMP system and
still be programmatically correct.

NUMA Concepts 1–1

Performance Implications of NUMA Support

Although software can treat a CC-NUMA system as a traditional SMP
system and still be programmatically correct, obtaining optimal performance
from a CC-NUMA system depends on appropriate use of its capabilities.
In a network of systems, an application must sometimes run on a remote
system rather than one local to the user. However, the application will
almost always run faster on a local system that has all the resources needed
by the application. This is because the connection between the systems
increases response latency. The same principal applies when you consider
a CC-NUMA multiprocessor system as a network of building blocks, each
of which contains a set of CPUs, memory arrays, and I/O ports. The CPUs
in one system building block can access memory that is available locally (in
their own block) or remotely (in another block). However, using the local
memory is faster because memory access through the interblock switch
increases response latency.

Starting with Tru64 UNIX Version 5.1, the operating system includes kernel
algorithms, utilities, and programming APIs that are NUMA aware. These
algorithms and user interfaces are used to maximize the ratio of local to
remote memory accesses and thereby help ensure optimal performance on
CC-NUMA hardware.

In most of the software product documentation pertaining to NUMA
support, references to a NUMA system assume a CC-NUMA hardware
implementation. Therefore, this document also refers to CC-NUMA systems
as NUMA systems.

1.1 RADs and QBBs

On Tru64 UNIX systems, the building blocks that make up a NUMA system
are mapped to structures called Resource Affinity Domains (RADs). A RAD
identifies the set of CPUs, memory arrays, and I/O busses that, when used
together, allow the system to work most efficiently.

Resource affinity domain, like most abstract concepts, is easier learned in the
context of a concrete example. For that reason, it is worthwhile to consider
what a RAD corresponds to in current hardware products, such as the GS80,
GS160, and GS320 AlphaServer systems. On these systems, each SMP unit
is called a Quad Building Block (QBB or QUAD), as shown in Figure 1–1.

1–2 NUMA Concepts

Figure 1–1: QBBs

ZK-1803U-AI

Switch

GP0
GP1

GP2

QBB0 QBB1 QBB2

Memory

CPU CPU CPU CPU

HBA HBA

Memory

CPU CPU CPU CPU

HBA HBA

Memory

CPU CPU CPU CPU

HBA HBA

Each QBB can contain up to four CPUs, a set of memory arrays, and an I/O
processor (IOP) that, through two host bus adapters (HBAs), accommodates
two to eight I/O busses. An internal switch in each QBB allows all CPUs
equal access to both local memory and the I/O busses connected to the local
I/O processor. An application running on a CPU in one QBB accesses the
memory in another QBB by routing through the global port (GP) of the local
QBB and the global port (GP) of the other QBB. On larger NUMA systems
(GS160 and GS320), access is also routed through a Hierarchical Switch
(sometimes called the HSwitch or Global Switch) that connects the global
ports of all QBBs. Therefore, the remote/local response latency between
QBBs is on the order of 2/1 or 3/1, depending on the type of system.

Although the operating system supports transparent resource access
through the global ports and the HSwitch, performance is optimized when
process operations use memory and I/O channels in the same QBB as the
CPU where the process is running. Therefore, the CPUs, memory arrays,
and I/O busses in the same QBB are viewed by the operating system as
having affinity for one another and are included in the same RAD. Starting
with Tru64 UNIX Version 5.1, the operating system makes a best effort to:

• Schedule all threads of a multithreaded application on CPUs in the
same RAD

• Allocate memory for each process or application thread in the same RAD
as the CPU where the process or thread is running

The default NUMA-aware algorithms for scheduling and allocating
resources to a process or thread work well when the resources in one RAD
can accommodate the number of threads and the memory demands in any
one application.

NUMA Concepts 1–3

The NUMA application programming interfaces (APIs) allow applications
to make scheduling and resource allocation decisions based on advance
knowledge of the application’s resource needs and behavior. Proper
manipulation of system resources and process scheduling through NUMA
APIs has the following potential advantages:

• A master application can distribute associated applications among
available QBBs in a way that will ensure each the most likelihood of
using CPU cycles, memory cache, and I/O channels of the same QBB.

• An application can notify the operating system of relationships between
processes and threads that should be scheduled on the same RAD and,
if migration to another RAD becomes advantageous, must be moved
together.

• A very large and complex application whose resource demands and
number of threads exceed the capacity of one QBB can stripe its CPU
cycles, I/O load, and the memory that contains program data across
QBBs.

Figure 1–2 shows how a RAD maps to a QBB.

Figure 1–2: RAD/QBB Mapping

ZK-1804U-AI

Switch

GP0
GP1

GP2

QBB0 QBB1 QBB2

RAD0 RAD1 RAD2

Applications can assign themselves to a particular RAD. In addition, system
administrators can move applications to a RAD by using the -r option of the
runon command. However, to be portable and maintainable, applications
and scripts should not bind themselves to hardware topology. In particular,
applications and system administration scripts should never depend on the
existence of a particular RAD identifier, such as 0, 1, or 2.

It is important to emphasize two points about NUMA platforms:

• A RAD is a more generic concept than a QBB.

1–4 NUMA Concepts

• In most cases, it is not necessary for programmers to rewrite existing
applications or for system administrators to assign applications to
specific RADs to obtain good performance on NUMA platforms running a
mix of applications. Use of NUMA APIs and RAD-specific scheduling by
a system administrator are recommended only for specific cases.

A RAD is used by software to identify and use optimal combinations of
run-time resource combinations, whereas a QBB is a physical building block
for a particular implementation of NUMA hardware architecture. RAD
structures and NUMA programming functions are designed to be hardware
independent so they will support different hardware architectures. On
future NUMA AlphaServer platforms, CPUs, memory arrays, and I/O busses
might not be grouped into QBBs. Therefore, RADs support application
portability among different NUMA platforms.

This application portability also applies to traditional SMP systems, such
as those in the ES and DS families of AlphaServer systems. Starting with
Tru64 UNIX Version 5.1, NUMA-aware applications can run on these SMP
systems by handling them as single-RAD systems. On single-RAD systems,
the only RAD that exists is RAD0, which contains all the CPUs, memory
arrays, and I/O channels in the system. There is no performance advantage
to running NUMA-aware applications on a single-RAD system (all resources
are treated as being equidistant from one another). However, application
portability is preserved as long as the application is designed to:

• Query the configuration to get information about available RADs

• Use only the RADs that are currently available

The NUMA structures and functions discussed in Chapter 2 are analogous
to those used by the operating system software. Although published for use
by programmers, NUMA APIs should be used only in specialized layered
software, such as databases, transaction processing products, or high
performance technical computing applications, for which dedicated use and
control of system resources are appropriate. For system administrators,
there are also tuning parameters that can be adjusted to customize memory
allocation on a per-RAD basis. However, even RAD-specific tunable
parameters are best left to be automatically set by the operating system
(or, if reset, be the same value for all RADs) unless all user applications
being run on the system are NUMA aware. Therefore, RAD-specific
system tuning should be used only when the NUMA system (or one of its
hardware partitions) is dedicated to running NUMA-aware applications.
(See Section 1.2 for more information about partitioning.)

NUMA Concepts 1–5

1.2 RADs and Partitioning

Partitioning refers to dividing a system into two or more resource groups, or
partitions, each partition containing CPUs, memory, and I/O channels. After
a system is partitioned, each partition is used independently of the others.

Theoretically, partitioning can be done through hardware (hard partitioning)
or operating system software (soft partitioning). Hard partitioning is
currently supported on the GS160 and GS320 AlphaServer systems. The
operating system provides resource management features that do not cross
partition boundaries.

A partition on a GS160 or GS320 AlphaServer system can contain one or
more QBBs and is set up through a hardware console facility. When a system
is partitioned, an operating system is installed in each partition. Therefore, a
GS320 with two partitions can be running two instances of the same version
of Tru64 UNIX software, two different versions of Tru64 UNIX software,
or two entirely different operating systems. As shown in Figure 1–3, each
operating system instance is essentially firewalled from access to resources
in any hard partition except the one in which it is running.

Figure 1–3: Partitioned NUMA System

ZK-1805U-AI

Switch

GP0
GP1

GP2

QBB0 QBB1

OS instance
in Partition 0

OS instance
in Partition 1

QBB0

RAD0 RAD1 RAD0

The instance of Tru64 UNIX software that is running in Partition 0 can
access two QBBs whereas the instance that is running in Partition 1 can
access 1 QBB. In each partition, QBB numbering and RAD numbering starts
at 0 and are unique only within the same partition. An operating system
does not have access to information about RADs or their associated QBBs

1–6 NUMA Concepts

in any hard partition save the one in which it is installed. Even firmware
upgrades must be installed independently on each hard partition.

This point is important when using NUMA user and programming interfaces
provided by the operating system. When the operating system is installed in
a partition, queries about the number of RADs or CPU slots available in the
system return the number of RADs available in the partition.

Recognition that the system contains three QBBs occurs at the hardware
level through the HSwitch, which recognizes each QBB through its
unique global port identifier. System operators can access platform-wide
information through an external System Management Console (SMC).
Operating system instances that are installed on any of the partitions do
not have access to the SMC.

1.3 RADs, Resource Allocation, and Process Scheduling
Starting with Tru64 UNIX Version 5.1, system administrators can use the
-r option of the runon command to execute an application on a specific RAD.

The commands used to create and use processor sets (psets) on traditional
SMP systems can also be used to advantage on NUMA systems. However,
system administrators should factor in the RAD locations of CPUs when
using pset interfaces on NUMA systems. On a NUMA system, it is
important to define a pset to contain processors in the same RAD or (if more
than four processors are required) in the fewest number of RADs that are
needed to meet the resource requirements of the applications to be run on
the processor set. This practice optimizes performance on NUMA systems
because it maximizes the ratio of local-to-remote memory accesses. System
administrators and programmers must apply this principle both to processor
sets being defined for new applications and processor sets being defined for
applications that previously ran on traditional SMP systems.

See runon(1) for more information about the runon command.
See pset_create(1) for information about creating a pset and for
cross-references to other pset-related reference pages.

______________________ Note _______________________

Currently, system administrators cannot determine the RAD
location of a CPU through a command-line or graphical interface.
(For programs, the rad_get_cpus() function returns this
information.) However, Appendix A contains the source code for
a utility that queries the system for RAD and CPU identifiers.
Sites can copy, adapt, and build this program for local use.

For the GS80, GS160, and GS320 AlphaServer systems, CPU
identifiers and RAD identifiers have a fixed relationship, such

NUMA Concepts 1–7

that CPUs 0 to 3 are in RAD0, CPUs 4 to 7 are in RAD1, and so
forth. Therefore, system administrators can assume for use in
the pset_assign_cpu command that this fixed relationship
of CPU numbers to RAD numbers is valid. However, the
fixed relationship of these numbers is not likely to apply to
future NUMA AlphaServer systems. Therefore, users should
not write scripts or programs that assume a fixed relationship
of CPU numbers to RAD numbers if they want these scripts
and programs to be portable to future generations of NUMA
AlphaServer systems.

RAD0 always contains the boot CPU on GS80, GS160, and GS320
AlphaServer systems. However, this assumption, too, is not likely
to apply to future generations of NUMA AlphaServer systems.

The NUMA APIs are used to:

• Identify and query the number of existing RADS and the availability of
resources in these RADs

• Schedule processes and threads to run in RADs that offer the appropriate
balance of available CPU cycles and memory for what the processes
will be doing

See Section 2.2 for a summary of the library routines associated with
NUMA-aware resource allocation and process scheduling.

The NUMA APIs are recommended for new versions of applications
that currently create and manipulate psets if those applications
will run on NUMA AlphaServer systems as well as traditional SMP
systems. Existing applications that use the functions create_pset(),
destroy_pset(), assign_cpu_to_pset(), assign_pid_to_pset(),
and print_pset_error() do not require changes to be able to run on
NUMA AlphaServer systems. However, the manner in which existing
programs assign CPUs to a processor set does not take into account the
recommended practice of maximizing the ratio of local-to-remote memory
accesses on a NUMA system. If this ratio is not as good as possible (given
the amount of local memory that is available), the application does not
achieve optimal performance.

For this reason, new applications designed for use on NUMA systems or
on both traditional SMP and NUMA systems should use NUMA APIs.
Reference pages for these APIs are listed in Section 2.2.

1–8 NUMA Concepts

2
NUMA-Aware Applications

Starting with Tru64 UNIX Version 5.1, Tru64 UNIX software is composed
of NUMA-aware programs. Therefore, the majority of user applications do
not have to use NUMA APIs to achieve reasonable performance on NUMA
systems. However, certain user applications might be optimized through
direct use of these APIs. This chapter describes the default NUMA-aware
behavior in the operating system, and provides an overview of the NUMA
APIs that applications can use directly.

2.1 Default NUMA-Aware Behavior of the Operating System

Starting with Tru64 UNIX Version 5.1, the following defaults are in place to
increase the likelihood that NUMA system resources are used efficiently for
most types of applications:

• The operating system defines a “home RAD” for each process and all its
threads. Default process or thread scheduling and memory allocation are
done on the assigned home RAD whenever possible.

In other words, the operating system attempts to schedule a process and
all its threads on CPUs in the home RAD. Furthermore, the operating
system attempts to allocate memory for application and kernel data on
the home RAD. The cache affinity algorithms previously available only
for traditional SMP systems are also used. Therefore, if a thread that
previously ran on a particular CPU needs to be scheduled, the operating
system attempts to schedule that thread on the same CPU.

The operating system also defines a default overflow set of RADs. When
there is insufficient free memory for application and kernel data on the
home RAD, the operating system attempts to allocate memory from one
or more remote RADs based on the default overflow set.

• For data that is globally accessed, the operating system attempts to
replicate the data in or stripe it across all RADs where it might be
accessed. More specifically, the operating system attempts to:

– Replicate kernel code and kernel read-only data on all RADs at
boot time

– Replicate other kinds of read-only data, such as shared program
and library code, on all RADs where a running process or thread
needs to access it

NUMA-Aware Applications 2–1

If there is insufficient free memory on the RAD where the process or
thread is running to replicate shared, read-only data, the operating
system will utilize a copy on a remote RAD rather than wait for free
memory on the local RAD to make the copy.

– Stripe System V shared memory (which is not read-only) across all
RADs

Striping minimizes the likelihood that certain processes and threads
always access System V shared memory locally while others always
access it remotely.

• The operating system attempts to balance the load on each RAD so
that local CPU cycles and local memory pages are both available to the
processes running on the RAD.

Local availability of memory and CPU cycles influences RAD selection
at the time a process is created. The same factors might cause the
operating system to migrate a process and associated memory pages
from one RAD to another in response to changing resource requirements
and access patterns.

2.2 NUMA APIs for User Applications

When a mix of applications with differing resource needs are run on the
same system, it is best for user applications to rely on the default behavior
of operating system software. However, large and highly specialized user
applications might realize additional performance advantages through direct
use of NUMA APIs. For example:

• An application for which I/O requests are extremely large might realize
significant performance advantages when the CPU cycles and memory
pages associated with an I/O request are striped across all available
RADs. This optimization strategy works only if the data being read from
or written to disk is also striped across controllers that are attached to
the I/O ports of different RADs. (If I/O ports on different RADs channel
data into the same RAID controllers, device latency will likely offset the
bandwidth increase for CPU cycles and memory.)

• Applications with many subprocesses or threads that operate on large
but different subsets of the same data might benefit from explicit
resource management. In this case, NUMA APIs can help to increase the
ratio of local to remote accesses by changing the default algorithms for
replicating or striping program data and System V shared memory.

NUMA APIs are included in the following libraries:

• The NUMA Library (libnuma)

• The Standard C Library (libc)

2–2 NUMA-Aware Applications

Certain routines required for NUMA-aware programming are included
in the libc library because they perform operations that are also useful
in more generic types of programs.

• The POSIX Threads Library (libpthread)

NUMA routines that are useful only in multithreaded programs are
included in the libpthread library.

The NUMA data types, structures, and function prototypes are defined
by including the numa.h header file. These APIs introduce three new
constructs:

• RAD set

A RAD set is a mechanism for passing information about RADs between
an application and the operating system or between two applications.
For example, an application can use a RAD set to query the operating
system about the number of existing RADs. An application can also
specify a RAD set to pass information about the number of RADs needed
to meet application resource requirements.

In traditional applications, the identifiers for system components are
typically returned as a bit mask that is stored in a word or longword
buffer. A fixed-length buffer limits the number of components that can
be identified to the number of bits in the buffer (32 or 64 for a word or
longword, respectively). However, a RAD set is represented by an opaque
data type so that applications do not include a fixed-length buffer for
querying or passing information about RADs.

• CPU set

A CPU set is also a mechanism for passing information about CPUs
between an application and the operating system or between two
applications. Like a RAD set, a CPU set is represented by an opaque
data type.

A CPU set is different from the processor set (pset) that is created
and manipulated by the APIs and commands already in use on
traditional SMP systems. A pset reserves specific CPUs for use
only by user-specified applications, while a CPU set is simply an
information-passing mechanism.

A NUMA-aware application that requests allocation of system resources
uses RAD sets and CPU sets to ensure that CPUs and memory are
evaluated and used in the context of the RADs in which these resources
are located. If the application intends to isolate some number of CPUs
on the system for exclusive use by one or more key processes, the
application first queries the number of RADs on the system and the RAD
locations of the available CPUs. In almost all cases, the CPUs selected
for a processor set should be from the same RAD or, if any one RAD

NUMA-Aware Applications 2–3

has an insufficient number of CPUs for the expected workload, from
the fewest number of RADs. If the application runs on a traditional
SMP system, all available CPUs are in a single RAD; however, the
NUMA-aware logic for evaluating and using information about system
processors remains the same.

• NUMA Scheduling Group (NSG)

A NUMA Scheduling Group is the construct through which a
NUMA-aware application ensures that a related set of processes and
threads execute on the same RAD.

An application can attach the identifiers of one RAD and of one or more
processes to a NUMA Scheduling Group. By doing this, the application
specifies that:

– All those processes and any of their subprocesses or threads must
execute on the same RAD

– In the event that any of the processes or threads must be moved to
a new RAD, all other processes and threads attached to the NUMA
Scheduling Group are moved as well

See numa_types(4) for a detailed description of the data types,
structures, and macros used with the NUMA functions. See
numa_scheduling_groups(4) for a description of a NUMA scheduling
group.

NUMA functions can be grouped into categories according to what is being
queried or used. The tables referred to in the following list include the
name, purpose, library, and reference page for each routine in the category.
Some routines are duplicated in two tables because they query or create a
relationship that spans two categories:

• RADs and RAD sets: Table 2–1

• CPUs and CPU sets: Table 2–2

• NUMA Scheduling Groups: Table 2–3

• Processes and threads: Table 2–4

• Memory management: Table 2–5

See Section 2.3 for a summary of policies for NUMA memory
management.

2–4 NUMA-Aware Applications

Table 2–1: RADs and RAD Sets
Function Purpose Library Reference Page

nloc() Returns the RAD set
that is local or remote
to a resource.

libnuma nloc(3)

rad_attach_pid() Attaches a process
to a RAD (assigns a
home RAD but allows
execution on other
RADs).

libnuma rad_at-
tach_pid(3)

rad_bind_pid() Binds a process to a RAD
(assigns a home RAD
and restricts execution
to the home RAD).

libnuma rad_at-
tach_pid(3)

rad_foreach() Scans a RAD set for
members and returns
the first member found.

libnuma rad_foreach(3)

rad_get_cur-
rent_home()

Returns the caller’s
home RAD.

libnuma rad_get_cur-
rent_home(3)

rad_get_cpus() Returns the set of CPUs
that are in a RAD.

libnuma rad_get_num(3)

rad_get_freemem()Returns a snapshot of
the free memory pages
that are in a RAD.

libnuma rad_get_num(3)

rad_get_info() Returns information
about a RAD, including
its state (online or
offline) and the number
of CPUs and memory
pages it contains.

libnuma rad_get_num(3)

rad_get_max() Returns the number of
RADs in the system. a

libnuma rad_get_num(3)

rad_get_num() Returns the number of
RAD’s in the caller’s
partition. a

libnuma rad_get_num(3)

rad_get_phys-
mem()

Returns the number of
memory pages assigned
to a RAD.

libnuma rad_get_num(3)

rad_get_state() Reserved for future use.
(Currently, RAD state is
always set to ONLINE.)

libnuma rad_get_num(3)

radaddset() Adds a RAD to a
RAD set.

libnuma radsetops(3)

NUMA-Aware Applications 2–5

Table 2–1: RADs and RAD Sets (cont.)

Function Purpose Library Reference Page

radandset() Performs a logical AND
operation on two RAD
sets, storing the result
in a RAD set.

libnuma radsetops(3)

radcopyset() Copies the contents of
one RAD set to another
RAD set.

libnuma radsetops(3)

radcountset() Returns the members
of a RAD set.

libnuma radsetops(3)

raddelset() Removes a RAD from
a RAD set.

libnuma radsetops(3)

raddiffset() Finds the logical
difference between
two RAD sets, storing
the result in another
RAD set.

libnuma radsetops(3)

rademptyset() Initializes a RAD set
such that no RADs
are included.

libnuma radsetops(3)

radfillset() Initializes a RAD set
such that it includes
all RADs.

libnuma radsetops(3)

radisemptyset() Tests whether a RAD
set is empty.

libnuma radsetops(3)

radismember() Tests whether a RAD
belongs to a given
RAD set.

libnuma radsetops(3)

radorset() Performs a logical OR
operation on two RAD
sets, storing the result
in another RAD set.

libnuma radsetops(3)

radsetcreate() Allocates a RAD set and
sets it to empty.

libnuma radsetops(3)

radsetdestroy() Releases the memory
allocated for a RAD set.

libnuma radsetops(3)

radxorset() Performs a logical XOR
operation on two RAD
sets, storing the result
in another RAD set.

libnuma radsetops(3)

a On a partitioned system, the system and the partition are equivalent. In this case, the operating system
returns information only for the partition in which it is installed.

2–6 NUMA-Aware Applications

Table 2–2: CPUs and CPU Sets
Function Purpose Library Reference

Page

cpu_foreach() Enumerates the members
of a CPU set.

libc cpu_fore-
ach(3)

cpu_get_cur-
rent()

Returns the identifier of the
current CPU on which the
calling process is running.

libc cpu_get_cur-
rent(3)

cpu_get_info() Returns CPU information
for the system. a

libc cpu_get_info(3)

cpu_get_max() Returns the number of
CPU slots available in the
caller’s partition. a

libc cpu_get_info(3)

cpu_get_num() Returns the number of
available CPUs.

libc cpu_get_info(3)

cpu_get_rad() Returns the RAD identifier
for a CPU.

libnuma cpu_get_rad(3)

cpuaddset() Adds a CPU to a CPU set. libc cpusetops(3)

cpuandset() Performs a logical AND
operation on the contents of
two CPU sets, storing the
result in a third CPU set.

libc cpusetops(3)

cpucopyset() Copies the contents of one
CPU set to another CPU set.

libc cpusetops(3)

cpucountset() Returns the number of
CPUs in a CPU set.

libc cpusetops(3)

cpudelset() Deletes a CPU from a
CPU set.

libnuma cpusetops(3)

cpudiffset() Finds the logical difference
between two CPU sets,
storing the result in a
third CPU set.

libnuma cpusetops(3)

cpuemptyset() Initializes a CPU set such
that it includes no CPUs.

libnuma cpusetops(3)

cpufillset() Initializes a CPU set such
that it includes all CPUs.

libnuma cpusetops(3)

cpuisemptyset() Tests whether a CPU
set is empty.

libnuma cpusetops(3)

cpuismember() Tests whether a CPU is a
member of a particular
CPU set.

libnuma cpusetops(3)

NUMA-Aware Applications 2–7

Table 2–2: CPUs and CPU Sets (cont.)

Function Purpose Library Reference
Page

cpuorset() Performs a logical OR
operation on the contents of
two CPU sets, storing the
result in a third CPU set.

libnuma cpusetops(3)

cpusetcreate() Allocates a CPU set and
sets it to empty.

libnuma cpusetops(3)

cpusetdestroy() Releases the memory
allocated to a CPU set.

libnuma cpusetops(3)

cpuxorset() Performs a logical XOR
operation on the contents of
two CPU sets, storing the
result in a third CPU set.

libnuma cpusetops(3)

a On a partitioned system, the system and the partition are equivalent. In this case, the operating system
returns information only for the partition in which it is installed.

Table 2–3: NUMA Scheduling Groups
Function Purpose Library Reference Page

nsg_attach_pid() Attaches a process to
a NUMA scheduling
group.

libnuma nsg_at-
tach_pid(3)

nsg_destroy() Removes a NUMA
scheduling group
and deallocates its
structures.

libnuma nsg_de-
stroy(3)

nsg_detach_pid() Detaches a process from
a NUMA scheduling
group.

libnuma nsg_at-
tach_pid(3)

pthread_nsg_at-
tach()

Attaches a thread to
a NUMA scheduling
group.

libpthread pthread_nsg_at-
tach(3)

pthread_nsg_de-
tach()

Detaches a thread from
a NUMA scheduling
group.

libpthread pthread_nsg_de-
tach(3)

nsg_get() Returns the status of
a NUMA scheduling
group.

libnuma nsg_get(3)

nsg_get_nsgs() Returns a list of NUMA
scheduling groups that
are active.

libnuma nsg_get_nsgs(3)

2–8 NUMA-Aware Applications

Table 2–3: NUMA Scheduling Groups (cont.)

Function Purpose Library Reference Page

nsg_get_pids() Returns a list of
processes attached to
a NUMA scheduling
group.

libnuma nsg_get_pids(3)

nsg_init() Looks up (and possibly
creates) a NUMA
scheduling group.

libnuma nsg_init(3)

nsg_set() Sets group ID, user ID,
and permissions for
a NUMA scheduling
group.

libnuma nsg_set(3)

pthread_nsg_get() Returns a list of threads
attached to a NUMA
scheduling group.

libpthread pthread_nsg_get(3)

Table 2–4: Processes and Threads
Function Purpose Library Reference Page

nfork() Creates a child
process that is an
exact copy of its
parent process. See
also the table entry
for rad_fork().

libnuma nfork(3)

nmadvise() Tells the system what
behavior to expect
from a process with
respect to referencing
mapped files and
shared memory
regions.

libnuma nmadvise(3)

nsg_attach_pid() Attaches a process to
a NUMA scheduling
group.

libnuma nsg_at-
tach_pid(3)

nsg_detach_pid() Detaches a process
from a NUMA
scheduling group.

libnuma nsg_at-
tach_pid(3)

pthread_nsg_at-
tach()

Attaches a thread to
a NUMA scheduling
group.

libpthread pthread_nsg_at-
tach(3)

pthread_nsg_de-
tach()

Detaches a thread
from a NUMA
scheduling group.

libpthread pthread_nsg_de-
tach(3)

NUMA-Aware Applications 2–9

Table 2–4: Processes and Threads (cont.)

Function Purpose Library Reference Page

pthread_rad_at-
tach()

Attaches a thread
to a RAD set.

libpthread pthread_rad_at-
tach(3)

pthread_rad_bind()Attaches a thread
to a RAD set and
restricts its execution
to the home RAD.

libpthread pthread_rad_at-
tach(3)

pthread_rad_de-
tach()

Detaches a thread
from a RAD set.

libpthread pthread_rad_det-
tach(3)

rad_attach_pid() Attaches a process
to a RAD (assigns
a home RAD but
allows execution on
other RADs).

libnuma rad_at-
tach_pid(3)

rad_bind_pid() Binds a process to a
RAD (assigns a home
RAD and restricts
execution to the
home RAD).

libnuma rad_at-
tach_pid(3)

rad_fork() Creates a child
process on a RAD
that optionally does
not inherit the RAD
assignment of its
parent. See also
the table entry for
nfork().

libnuma rad_fork(3)

Table 2–5: Memory Management
Function Purpose Library Reference Page

memalloc_attr() Returns the
memory allocation
policy for a RAD
set specified by its
virtual address.

libnuma memal-
loc_attr(3)

nacreate() Sets up an arena
a for memory
allocation for
use with the
amalloc()
function.

libc amalloc(3)

2–10 NUMA-Aware Applications

Table 2–5: Memory Management (cont.)

Function Purpose Library Reference Page

nmadvise() Tells the system
what behavior
to expect from a
process with respect
to referencing
mapped files and
shared memory
regions.

libnuma nmadvise(3)

nmmap() Maps an open file
(or anonymous
memory) onto the
address space for a
process by using a
specified memory
allocation policy.

libnuma nmmap(3)

nshmget() Returns or creates
the ID for a shared
memory region.

libnuma nshmget(3)

a An arena is used in multithreaded programs when there is a need for thread-specific heap memory
allocation.

2.3 NUMA Memory Management Policies
Starting with Tru64 UNIX Version 5.1, application programmers can choose
among the following policies to control memory allocation on NUMA systems.
The policies can be specified for either a specific memory object or a kernel
memory allocation request by using one of the following memory allocation
attributes that are defined in the numa_types.h file:

MPOL_DIRECTED Allocate memory from a specific RAD (directed
allocation)

MPOL_THREAD Allocate memory from the current thread’s home
RAD (directed allocation that operates in the context
of a multithreaded application)

MPOL_STRIPED Stripe application data across the memory in a
specified RAD set

MPOL_REPLICATED Replicate application data in the memory of all RADs

These major attributes have several associated attributes for further
refinement of the memory allocation policy. For the directed and
thread-related memory allocation policies, an application programmer

NUMA-Aware Applications 2–11

can define an overflow set of RADs for use when sufficient resources are
unavailable in the preferred RAD. For the striped memory allocation policy,
a programmer can define the number of pages for the stripe width (stride).
To request that the operating system not migrate already allocated pages
to another RAD, a programmer can combine the major policy attributes
with the MPOL_NO_MIGRATE attribute.

When the NUMA memory allocation policy is not set by the application, the
operating system applies the following defaults for different parts of an
application’s address space:

• Memory for private data, such as the heap and stacks for processes and
threads, is allocated from the home RADs of the processes and threads.

• Program text and shared libraries are replicated in all RADs

• Shared data, such as System V shared memory, is striped (using a
one-page stride) across all RADs

To override these defaults, an application programmer can use the following
functions:

• The nmmap() function to override the default policy for a new file object
or an already mapped range of addresses for an open file

• The nshmget() function to override the default policy for an already
mapped address range of shared memory

• The nmadvise() function to override the default policy used for process
access to an already mapped range of address space for an open file or a
region of shared memory

The nmmap(), nshmget(), and nmadvise() functions include a parameter
of type memalloc_attr_t to contain the NUMA memory allocation
policy and associated attribute values. When this argument is null, the
nmmap(), nshmget(), and nmadvise() functions have the same behavior
as their traditional counterparts (mmap(), shmget(), and madvise(),
respectively).

______________________ Note _______________________

A memory allocation policy request on any UNIX platform
(NUMA or traditional SMP) is not implemented in an absolute
manner. UNIX architecture is designed for efficient sharing of
resources among system and user processes rather than dedicated
resource assignments, particularly where memory is concerned.
This means that the operating system does not allow the policies
requested by or for any one application to completely override
the minimal memory requirements of other user and system
processes that are running at the same time. Therefore, to

2–12 NUMA-Aware Applications

ensure consistent implementation of the memory allocation policy
requested through NUMA APIs, a NUMA-aware application
should be run on a system (or system partition) that contains
sufficient memory resources for both the application’s processes
and any other processes that will be running at the same time.

NUMA-Aware Applications 2–13

A
The radtool Program

This appendix contains the source code (Example A–1 and Example A–2)
and the Makefile (Example A–3) for the radtool utility. This utility queries
the system for identifiers of available RADs and for identifiers of CPUs in
a specified RAD. The source code for this tool illustrates the use of several
NUMA APIs that all NUMA-aware programs will need to use. In addition,
the radtool utility can be built and installed on a customer system, then
used by system administrators and site-specific scripts to avoid dependence
on static assignments of RAD numbers and of CPU numbers within RADs.

The command-line synopsis for radtool is as follows:

path/radtool [-x] | [[-v] [-r | -c rad-id]]

Where:

-x Displays the utility’s usage message.

-v Displays descriptive headings and comma separators
for returned values.

-r Returns identifiers of existing RADs. This is also
the behavior when the command is entered without
any options.

-c rad-id Returns identifiers of available CPUs in the specified
RAD.

The program header file for this example is a template and is included for
possible site enhancements. (The header file does not supply definitions
used in this version of the program but is referred to in the Makefile.)
For example, the program might be internationalized to support message
catalogs for translated messages and also include a header file that is created
by the mkcatdefs command. In this case, the header file will be renamed
radtool_msg.h and will define macros for default message strings. See
mkcatdefs(1) for more information about creating message catalogs and a
header file that centralizes maintenance of default message strings.

The radtool Program A–1

Example A–1: Source File for the radtool Program

/*
* radtool.c -- NUMA API Example program
*
*
*/
#include <sys/types.h>
#include <sys/time.h>
#include <sys/siginfo.h>

#include <errno.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <numa.h>
#include <cpuset.h>
#include <radset.h>
#include "radtool.h"

/*
* command-line options:
*
* -r = display existing RADs
* -c <radid> = display CPUs for specified RAD
* -x = display eXplanation.
*/
#define OPTIONS "c:rvx"

/*
* command-line settable parameters and flags:
*/
bool show_rads = false; /* display existing RADs */
bool verbose = false; /* annotate output */
radid_t parm_rad = RAD_NONE; /* display CPUs for this RAD */

/*
* usage/help message
*/
char *USAGE = "\nUsage: %s {[-r] | [-c <radid>]} [-v] | [-x]\n\n\
Where:\n\
\t-r = Display existing RADs. Same as no arguments.\n\
\t-c <radid> = Display CPUs for specified RAD.\n\
\t-v = Include formatting text in display.\n\
\t-x = Display this explanation.\n\
";
char *cmd;

bool error = false;

/*
* die() - Emit error message and exit w/ specified return code.
* If exit_code < 0, save current errno, and fetch associated
* error string. Print error string after app error message.
* Then exit with abs(exit_code).
*/
void
die(int exit_code, char *format, ...)
{
va_list ap;
char *errstr;

A–2 The radtool Program

Example A–1: Source File for the radtool Program (cont.)

int saverrno;

va_start(ap, format);

if (exit_code < 0) {
saverrno = errno;
errstr = strerror(errno);
}

(void) vfprintf(stderr, format, ap);
va_end(ap);

if (exit_code < 0)
fprintf(stderr,"Error = (%d) %s\n", saverrno, errstr);

exit(abs(exit_code));
}

void
usage(){
fprintf(stderr, USAGE, cmd);
exit(1);
}

/*
* ===
*/
/*
* rad_get_existing() -- return set of currently existing rads, using nloc()
*
* NOTE: It is the caller’s responsibility to free the returned radset when it
* is no longer needed. See the call to radsetdestroy() at the end
* of the program.
*/
radset_t
rad_get_existing()
{
radset_t allrads;
numa_attr_t nat;

if(radsetcreate(&allrads) == -1) {
die(0-errno, "Unable to create radset for allrads\n");
}

/*
* This works for Tru64 UNIX Version 5.1.
* It returns the set of RADs that are <= RAD_DIST_REMOTE from an
* empty RAD set. All existing RADs satisfy this relationship.
*/
nat.nattr_type = R_RAD;
nat.nattr_descr.rd_radset = allrads;
nat.nattr_distance = RAD_DIST_REMOTE;
nat.nattr_flags = 0;

if(nloc(&nat, allrads) == -1) {
die(0-errno, "rad_get_existing: failure to get allrads\n");
}

return(allrads);
}

The radtool Program A–3

Example A–1: Source File for the radtool Program (cont.)

/*
* radshowset(): display a RAD set
*
* The "note" parameter is for annotating the display with text
* to indicate what the returned numbers represent.
* If "note" is NULL, RAD numbers are printed in a single line,
* separated by whitespace. The latter case is useful for returning
* values to commands in a shell script, for example:
*
* for rad in ‘radtool -r‘; do whatever; done
*
*/
void
radshowset(const radset_t set, const char *note)
{
radid_t id;
rad_cursor_t cursor = SET_CURSOR_INIT;
int flags = 0;
int i;

if (note != NULL)
printf("\n%s:\n", note);

if (radisemptyset(set)) {
if (note != NULL)
fprintf(stderr, "\tNone");

return;
}

for(i = 0;
(id = rad_foreach(set, flags, &cursor)) != RAD_NONE;

++i) {
if (note != NULL) {
/*
* "pretty print" - 8 to the bar
*/
if((i % 8) == 0)
printf("\n");
else

printf(", ");
}
printf("%3d", id);
}
printf("\n");
}
/*
* cpushowset(): display the CPU set
*
* The "note" parameter is for annotating the display with text to
* indicate what the returned numbers represent.
* If "note" is NULL, CPU numbers are printed in a single line and
* separated by whitespace. The latter case is useful for returning
* values to commands in a shell script, for example:
*
* for cpu in ‘radtool -c 2‘; do whatever; done
*/
void
cpushowset(const cpuset_t set, const char *note)
{

A–4 The radtool Program

Example A–1: Source File for the radtool Program (cont.)

cpuid_t id;
cpu_cursor_t cursor = SET_CURSOR_INIT;
int flags = 0;
int i;

if (note != NULL)
printf("\n%s:\n", note);

if (cpuisemptyset(set)) {
if (note != NULL)
fprintf(stderr, "\tNone");

return;
}

for(i = 0;
(id = cpu_foreach(set, flags, &cursor)) != CPU_NONE;

++i) {
if (note != NULL) {
/*
* "pretty print" - 8 to the bar
*/
if((i % 8) == 0)
printf("\n");
else

printf(", ");
}
printf("%3d", id);
}
printf("\n");
}

/*
* ===
*/

void
main(int argc, char *argv[])
{
extern int optind;
extern char *optarg;
char c;

cmd = argv[0];

/*
* process command-line options.
*/
while ((c = getopt(argc, argv, OPTIONS)) != (char)EOF) {
char *next;

switch (c) {
case ’c’:
parm_rad = strtoul(optarg, &next, 0);
if (parm_rad < 0 || *next != ’\0’) {
fprintf(stderr,
"Error: RAD identifier must be a positive integer\n");
error = true;
}
break;

The radtool Program A–5

Example A–1: Source File for the radtool Program (cont.)

case ’r’:
show_rads = true;
break;

case ’v’:
verbose = true;
break;

case ’x’:
usage();
/* NOT REACHED */

default:
error = true;
break;

}
}
done:

if (error) {
usage();
}

/*
* If a number was specified, it must be the "-c" argument.

* Display CPUs on the RAD with that number.
*/
if (parm_rad != RAD_NONE) {
cpuset_t cpus_in_rad;
char note[32]; /* big enough for now */

cpusetcreate(&cpus_in_rad);

if (rad_get_cpus(parm_rad, cpus_in_rad) == -1)
die(-2, "Unable to get CPUs in RAD %d\n", parm_rad);

if (verbose)
sprintf(note, "CPUs in RAD %d", parm_rad);

cpushowset(cpus_in_rad, verbose ? note : NULL);

cpusetdestroy(&cpus_in_rad);

exit(0);

} else {
show_rads = true; /* show something! */
}

/*
* Show all existing RADs, if requested.
*/
if (show_rads) {
radset_t allrads = rad_get_existing();

radshowset(allrads, verbose ? "Existing RADs" : NULL);

radsetdestroy(&allrads); /* be a good citizen */
}

A–6 The radtool Program

Example A–1: Source File for the radtool Program (cont.)

exit(0);
}

Example A–2: Header File for the radtool Program

/*
* radtool.h -- local header template for NUMA RAD tool program
*/

/*
* a useful type definition -- for example:
*/
typedef enum {false=0, true} bool;

Example A–3: Makefile for the radtool Program

Makefile template for NUMA sample programs
#
SHELL = /bin/sh

MACH =

CMODE = -std0
COPT = $(CMODE) -O2 #-non_shared
DEFS =
INCLS =
CFLAGS = $(COPT) $(DEFS) $(INCLS) $(ECFLAGS)

CXX = cxx
CXXMODE =
CXXFLAGS = $(CXXMODE) $(DEFS) $(INCLS) $(ECXXFLAGS)

ASFLAGS for alpha assembler:
ASDEFS = -DLANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY -D__alpha
ASPIC =
ASCPP =
ASFLAGS = $(ASPIC) -tune generic $(ASCPP) $(ASDEFS) $(EASFLAGS)

LDOPTS = #-dnon_shared
LDLIBS = -lnuma
LDFLAGS = $(CMODE) $(LDOPTS) $(ELDFLAGS)

export to environment as needed...
ROOTDIR = /
TMPDIR = /var/tmp
COMP_HOST_ROOT =
COMP_TARGET_ROOT =

HDRS = radtool.h

OBJS = radtool.o

PROGS = radtool

#---------------------------------

The radtool Program A–7

Example A–3: Makefile for the radtool Program (cont.)

all: $(PROGS)

radtool: radtool.o
$(CC) -o $@ $(LDFLAGS) $@.o $(LDLIBS)

$(OBJS): $(HDRS)

install:
@echo "Nothing to do..."

clean:
-rm -f *.o core.[0-9]*

clobber: clean
-rm -f $(PROGS)

A–8 The radtool Program

Index

A
APIs, NUMA

advantages of, 1–4
appropriate applications for, 1–5
categories of, 2–4
compared to SMP pset interfaces,

1–8
header file for including, 2–3
library locations, 2–2
portability issues, 1–5
purpose, 1–8
system defaults when APIs not

used, 2–1
when to use, 2–2

C
cache coherency, 1–1
CPU

getting RAD location of, 1–7
CPU sets

APIs for, 2–7t
purpose, 2–3

cpu_foreach function, 2–7t
use in radtool example, A–2e

cpu_get_current function, 2–7t
cpu_get_info function, 2–7t
cpu_get_max function, 2–7t
cpu_get_num function, 2–7t
cpu_get_rad function, 2–7t
cpuaddset function, 2–7t
cpuandset function, 2–7t
cpucopyset function, 2–7t
cpucountset function, 2–7t
cpudelset function, 2–7t

cpudiffset function, 2–7t
cpuemptyset function, 2–7t
cpufillset function, 2–7t
cpuisemptyset function, 2–7t

use in radtool example, A–2e
cpuismember function, 2–7t
cpuorset function, 2–8t
cpusetcreate function, 2–8t

use in radtool example, A–2e
cpusetdestroy function, 2–8t

use in radtool example, A–2e
cpuxorset function, 2–8t

G
Global Port, 1–3
Global Switch

(See Hierarchical Switch
(HSwitch))

GS80, GS160, and GS320 systems,
1–1
QBBs in, 1–2
RAD to QBB mapping, 1–7

H
Hierarchical Switch (HSwitch),

1–3

M
memalloc_attr function, 2–10t
memalloc_attr_t structure, 2–12
memory management

default system behavior, 1–3

Index–1

NUMA APIs for, 2–10t
NUMA policies for, 2–11
response latency issues, 1–3
system tuning issues, 1–5

MPOL_* attributes, 2–11

N
nacreate function, 2–10t
nfork function, 2–9t
nloc function, 2–5t

use in radtool example, A–2e
nmadvise function, 2–11t
nmmap function, 2–12
Non-Uniform Memory Access, 1–1
nsg_attach_pid function, 2–8t
nsg_attrach_pid function, 2–9t
nsg_destroy function, 2–8t
nsg_detach_pid function, 2–8t,

2–9t
nsg_get function, 2–8t
nsg_get_nsgs function, 2–8t
nsg_get_pids function, 2–9t
nsg_init function, 2–9t
nsg_set function, 2–9t
NSGs

(See NUMA Scheduling Groups
(NSGs))

nshmget function, 2–12
NUMA

(See Non-Uniform Memory
Access)

NUMA Scheduling Groups (NSGs),
2–4
APIs for, 2–8t
purpose, 2–4

P
partitioning, 1–6

software implications, 1–7
processes

NUMA APIs for, 2–9t

processor sets
(See psets)

psets, 1–7
compared to CPU sets, 2–3

pthread_nsg_attach function,
2–8t, 2–9t

pthread_nsg_detach function,
2–8t, 2–9t

pthread_rad_attach function,
2–10t

pthread_rad_bind function, 2–10t
pthread_rad_detach function,

2–10t

Q
QBB

(See Quad Building Block)
QUAD

(See Quad Building Block)
Quad Building Block, 1–2

R
RAD

(See Resource Affinity Domains)
RAD sets

APIs for, 2–5t
purpose, 2–3

rad_attach_pid function, 2–5t,
2–10t

rad_bind_pid function, 2–5t,
2–10t

rad_foreach function, 2–5t
use in radtool example, A–2e

rad_fork function, 2–10t
rad_get_cpus function, 2–5t

use in radtool example, A–2e
rad_get_current_home function,

2–5t
rad_get_freemem function, 2–5t
rad_get_info function, 2–5t
rad_get_max function, 2–5t

Index–2

rad_get_num function, 2–5t
rad_get_physmem function, 2–5t
rad_get_state function, 2–5t
radaddset function, 2–5t
radandset function, 2–6t
radcopyset function, 2–6t
radcountset function, 2–6t
raddelset function, 2–6t
raddiffset function, 2–6t
rademptyset function, 2–6t
radfillset function, 2–6t
radisemptyset function, 2–6t

use in radtool example, A–2e
radismember function, 2–6t
radorset function, 2–6t
radsetcreate function, 2–6t

use in radtool example, A–2e
radsetdestroy function, 2–6t

use in radtool example, A–2e

radtool utility, A–1
Makefile, A–7e
radtool.c, A–2e
radtool.h, A–7e

radxorset function, 2–6t
Resource Affinity Domains, 1–2
runon command, 1–7

S
scheduling

(See NUMA Scheduling Groups
(NSGs))

T
threads

NUMA APIs for, 2–9t

Index–3

