
Introduction

Silicon  Graphics,  Inc.  is  widely  known  as  a

manufacturer  of  very  large  multiprocessor

computers  for  the  HPC  (High  Performance

Computing)  market;  for  example  the  Altix

range's NUMA architecture scales to 1024 CPUs

in a single system image.  Less widely known is

the fact that SGI is a vendor of storage hardware

and  software,  including  a  NAS  (Network

Attached Storage) Server software and hardware

bundle.

The fundamental  principle  of  NAS is that  the

user's data resides on a central storage unit such

as a RAID array, and is accessed remotely from

client  machines  via  well-defined  network  file

sharing protocols.  There are several protocols in

common use today (e.g. CIFS, FTP, iSCSI1), but

NFS and the Linux NFS server  (knfsd2) will be

the focus of this paper.

NAS For Clusters

NFS  is  a  popular  means  of  accessing  shared

storage amongst users of compute clusters (such

as   HPC  clusters  or  animation  renderfarms).

There are several reasons for this.

Firstly, NFS client software is typically free and

comes bundled with the client operating system

(for  clusters,  this  almost  always  means  Linux

1 iSCSI is block-based and thus not strictly a filesharing

protocol, but is commonly provided on NAS products.

2 The `k' in knfsd is because the server  runs  inside the

Linux kernel.  There is also a unfsd, now little used.

machines  running  2.4  or  2.6  series  kernels).

Large scale  NFS deployments using automount

and NIS maps are well-understood solutions.

Secondly,  NFS  can  be  run  on  a  cheap

commodity  protocol  stack,  right  down  to  the

wiring.  Solutions  using  FibreChannel  or

Infiniband may exhibit  lower  latency or  higher

throughput, but for many cluster users 1 Gigabit

Ethernet is adequate.

Thirdly, NFS does not place any arbitrary limit

on the number  of  participating nodes, as some

cluster  filesystems  do.   Implementation  limits

and resource limits apply of course, but an NFS

user has every reason to expect that by buying a

large  enough  server  they  can  serve  as  many

clients as is necessary.

Finally, NFS is simple3.  The basic protocol is

reasonably  well  defined  in  freely  available

public  documents  (RFCs),  and  does  not  suffer

from a surfeit of complexity or incompatibilities

between slightly different versions.

The  price  paid  for  this  simplicity  is  a  poor

approximation  of  POSIX  filesystem semantics.

For  example,  using  the  mmap  system  call  on

NFS  files  can  sometimes  give  unexpected

results.   However,  many  cluster  users  run

software  whose  demands on  the  filesystem are

for performance rather than strict semantics.  In

particular,  and  perhaps  surprisingly  given  that

files  are  being  shared  between  hundreds  of

machines, the weak data consistency model used

3 NFSv4 less so.

- 1 -

Making The Linux NFS Server Suck Faster

Greg Banks <gnb@melbourne.sgi.com>

File Serving Technologies,

Silicon Graphics, Inc.

Abstract: The  Linux  kernel  contains  a  great  little  NFS  server,  the

emphasis being on `little'.  As part  of a strategy to sell Linux-based NAS

servers as shared storage for compute clusters comprising hundreds or

even  thousands  of  nodes,  SGI  has  modified  the  Linux  NFS  server  to

improve several aspects of scalability: many clients, high bandwidth, and

high  NFS  call  rate.   Problems  discovered  during this  work  and  SGI's

solutions are discussed.  All  the kernel  and nfs-utils  changes described

here are being made publicly available under the GPL licence, in stages

beginning July 2006.



by NFS usually does not seem to be an issue.

An advantage of NFS' simplicity is the relative

lack  of  emergent  behaviours4.  Proper  NFS

clients  are  designed  to  handle  servers  being

rebooted  or  being  removed  from  the  network

with  a  minimum of  disruption,  and in  practice

this  goal  is  often  achieved.   By  contrast,  the

complex  interactions  and  inter-dependencies

between  nodes  characteristic  of  some  cluster

filesystems can lead to instability.

From SGI's experience, a picture of  a “typical”

cluster,  from  the  point  of  view  of  the  shared

storage server, emerges:

� Nodes are Linux 2.6 or 2.4 clients, running

either a  RedHat or SUSE Enterprise distro,

or  a  cheaper  alternative such as CentOS or

Fedora Core.

� Cluster users have Linux expertise in-house,

and can roll out custom Linux kernels to fix

client  bugs.   This  is  important  for  a  server

vendor  as  it  gives  some  flexibility  in

preparing  a solution.

� Nodes are small machines, for example 1 or

2 CPUs.

� There are many nodes, maybe two thousand

or more.

� Connectivity  is  usually  Gigabit  Ethernet.

Network infrastructure is sophisticated, with

a  hierarchy  of  very  carefully  managed

switches, some of them very large.

� The  throughput/IOPS requirements  on each

cluster node are relatively low.

� Aggregate throughput/IOPS requirements on

the server are high.  When throughput is the

main  requirement,  often  one  gigabyte  per

second is required.  When IOPS are the main

requirement, often 50 to 100 fast (15 KRPM)

disks are required.

� To  achieve  the  required  performance,  the

server needs multiple Gigabit Ethernet cards.

For  example,  1  gigabyte  per  second  would

require 8 cards if all the cards could be run at

line rate.

� The  name  of  the  server  as  used  by  cluster

nodes needs to be uniform across the cluster,

to  ease  administration  of  the  cluster.   This

can  mean  either  a  single  IP  address  using

4 Again, NFSv4 less so.

Ethernet  link  aggregation  or  a  single  DNS

hostname using round-robin DNS5.

� A global file namespace is needed; instances

of the application running on any node in the

cluster  need  to  see  the  same  files  on  the

server.

� I/O  patterns  vary  between  users,  but  are

highly  regular  and  predictable  for  a  given

user and application.  Unfortunately,  cluster

users  like  to  divide  their  clusters  into

multiple  partitions  and  run  different  jobs

with  different  I/O  characteristics  in  those

different partitions.

SGI's Approach

The design that SGI sells to meet cluster users'

needs  for  shared  storage  is  based  on  small

numbers of  large individual  servers.  For many

users, a  single Altix  server with 8 CPUs and 8

Ethernet  cards  and  a  single  RAID  array  will

meet the performance requirements.

This  approach  has  several  advantages.   For

example,  a  single  server  trivially  achieves  a

global namespace.

Another  advantage  is  caching.   Some

workloads benefit from the caching of data and

metadata;  the  large,  high-bandwidth  shared

memory of the Altix architecture allows caching

to be maximised.

The building block for NAS servers is the Altix

A350  “brick”,  which  is  an  ia64  NUMA  node

containing 2 CPUs, 12 DIMM slots, and 4 PCI-

X slots.   These can be chained together  into  a

single  machine  using  SGI's  NUMAlink  cache-

coherent  interconnect.   Thus,  an  8  CPU Altix6

can be fitted with up to 192GB of RAM using

4GB DIMMs.

The  design  rules  seek  to  balance  CPU,

memory,  network  I/O  and  disk  I/O throughout

each  NUMA  node,  minimising  NUMAlink

traffic between nodes.  The goal is to have each

NUMA node acting as much as possible  like a

separate  server,  while  retaining  the  advantages

of shared data and metadata caching.

This design pre-dates SGI's move to Linux for

5 Aggregation and load-balancing options are limited by

the network topology.

6 This is quite small by Altix standards.

- 2 -



storage servers.  It is based on characteristics of

the filesystem, the kernel NFS server in the Irix

operating  system,  and the MIPS-based  Origin

hardware  used  in  previous  generations  of  the

design.   For  this  design  to  succeed,  the  Linux

kernel NFS server needs to scale to handle large

amounts  of  NFS  traffic  on  multi-node  NUMA

machines.

Performance Problems

Unfortunately,  early  trials  of  the  Altix  NAS

Server  showed  that  the  Linux  NFS  server  in

stock SUSE Linux Enterprise 9 [SLES9] did not

perform well nor did it scale that performance.

The first tests performed were streaming reads

from page cache, using TCP and a 32KB block

size.

At  the  low  end,  a  single  A350  brick  with  2

clients  was  unable  to  maintain  line  rate  on  2

Gigabit Ethernet NICs (being CPU limited).

Adding  more  hardware  did  not  help.   For

example, adding a fourth brick (going from 6 to

8 CPUs)  and 2  more clients,  added 33% more

CPU  power  but  achieved  only  12%  more  NFS

throughput.

Another interesting phenomenon was that with

a fixed load of 4 clients, going from 4 CPUs to 6

CPUs  used  up  all  the  extra  CPU  time  but

actually  delivered  less  throughput  in  absolute

terms.  In other words, negative scaling.

Furthermore, with workloads which emphasize

NFS  call  rate,  the  server  quickly  entered  a

“locked-up” state  where all the CPU was spent

servicing NFS requests and userspace tasks did

not run for minutes at a time.  As the first two

steps  in  the  NFS  mount  process  involve

userspace  daemons,  this  resulted  in  the  server

becoming unavailable to new clients.

This paper describes the work needed to solve

these problems.

Principles Of Operation

The  Linux  NFS  server  comprises  two  main

userspace  daemons  and  a  number  of  kernel

threads.  The userspace daemons (portmap and

rpc.mountd) are mostly  used during the mount

process, the kernel threads do most of the work.

Portmap  is  the  RPC  rendezvous  daemon;  it

manages  an  in-memory  database  of  mappings

between  RPC  program  numbers  and  TCP  or

UDP  ports.   Querying  this  database  is  a

necessary  first  step  in  setting  up  any  RPC

communication, including to rpc.mountd.

Rpc.mountd  has  several  functions,  but  most

significantly it is called by clients at mount time

to  return  the  root  file  handle  for  an  exported

directory.   Thus  it  interprets  data  in  the

/etc/exports file  and  enforces  the  permission

policies contained there.

The kernel threads are visible in the process list

as  multiple  “nfsd”  threads  and  one  “lockd”

thread.   The  nfsd  threads  serve  the  main  NFS

protocol  and  the  lockd  thread  serves  the

auxiliary  NLM  protocol  which implements file

locking  over  NFS.   All  the  nfsd  threads  are

effectively in a global pool of threads, and they

handle individual NFS calls from the network on

a  call-by-call  basis.   Note  that  there  is  no

relationship between threads and clients; indeed

there is very little per-client state in the server7.

The kernel code layer which deals with reading

incoming RPC calls from the network layer and

managing  nfsd  or  lockd  threads,  is  the  sunrpc

layer,  located  in  the  net/sunrpc/ and

include/linux/sunrpc/  directories.   Most  of  the

work  described  in  this  paper  comprised

modifications to that layer.

The main sunrpc data structures are

� svc_rqst which holds per-thread state.

� svc_sock holds per-socket RPC state.

� svc_serv holds  state  for  a  service  (such  as

NFS), i.e. is effectively global.  It contains a

list of sockets which have data waiting to be

read,  a  list  of  idle  threads,  and  lists  of

permanent  (e.g.  TCP  rendezvous)  and

temporary (e.g. connected TCP) sockets.

� svc_export8 represents  an  export  point  from

the  /etc/exports file.  A collection of these is

maintained in the kernel, initially empty and

populated on demand by rpc.mountd during

the mount process.

The main communication mechanism between

7 Again, NFSv4 differs.

8 Despite the name, this is an NFS data structure, not a

sunrpc one.

- 3 -



the  kernel  NFS  server  and  the  userspace

daemons  is  the  nfsdfs  filesystem,  a  small

special-purpose  filesystem  which  is  usually

mounted  on  /proc/fs/nfsd.   It  contains  a  small

number  of  files  with  interesting  semantics

(somewhat like the  /proc filesystem itself).  For

example,  the  threads  file can be read to get the

number  of  nfsd  threads,  and  written  to  change

the number  of threads.  Other files are  used to

implement  “upcalls”  to  rpc.mountd  when  the

kernel needs a policy decision to be made.

The lifetime of an RPC service thread is:

� if no socket has pending data, block (this is

the normal idle condition)

� take a pending socket from the global list

� receive an RPC call from the socket

� decode  the  call  (callout  into  protocol-

specific code)

� dispatch  the  call  (another  callout;  this  is

where  I/O  the  exported  filesystem  occurs,

e.g. reading a directory)

� encode the reply (another callout)

� send the reply on the socket.

Note that the thread has exclusive access to the

socket  while  receiving  and  sending,  but  not

when dispatching.  This allows an nfsd thread to

block  waiting  for  filesystem  I/O  without

preventing  other  threads  from  handling  calls

from the same client.

What Is Scaling?

The specific goals of the scaling work were to

make  the  Linux  NFS  server  scale  NFS

throughput and NFS call rate as close to linearly

as possible and as close as possible to hardware

limits,  from  the  smallest  SGI  NAS  server

configuration  (2  CPUs  and  2  Gigabit  Ethernet

NICs)  to  the  largest  (8  CPUs  and  8  NICs).

Specific workloads which must be handled are: a

small number of read streams, a small number of

write streams, a large number of read streams, a

large  number  of  write  streams,  a  readonly

directory-traversal, and the SPECsfs benchmark

[SPE97].

These workloads must still perform well when

the  load  is  generated  by  200  or  more  clients

instead  of  just  a  smaller  number.   Note  that

scaling  to  many  clients  is  a  different  and

additional  problem  to  scaling  for  high

performance,  see  [KEG06] for  similar  work  for

userspace network servers.

Lock Contention & Hotspots

The major  performance factor was  a  series  of

global locks which were contended.  The general

procedure  for  diagnosing  these  is  kernel

profiling,  using  either  Oprofile  [LEV] or  SGI's

profile.pl tool.

Note  that  in  a  NUMA  architecture,  we  can

experience an effect which has much of the same

performance  impact  as  lock  contention,  but

without  the  actual  contention  (which  can  be

diagnosed in  various  well-known ways  such as

lock  metering  or  kernel  profiling  [LEV]).   All

that is required is a cacheline which is frequently

written  by  CPUs  from  multiple  nodes.   The

additional  latency  involved  in  the  cache

coherency  transaction  which  recalls  a  dirty

cacheline from another node (while the CPU is

stalled) is enough to dramatically increase CPU

usage.  This extra time appears in kernel profiles

but  without  any  apparent  connection  to  lock

traffic.

The  most  important  culprit  was  the  svc_serv

spinlock,  which  guards  the  global  lists  of

pending sockets and idle threads.   The cacheline

containing  the  lock  and  the  lists  is  written  by

every  thread  at  least  twice  for  each  call  the

thread handles.

The solution was to split those fields out of the

svc_serv structure into an array of new svc_pool

structures,  and allocate  one such pool  for  each

NUMA  node.   Each  svc_pool is  assigned  a

subset of the nfsd threads, and those threads are

constrained to only run on CPUs of one node by

setting  each  thread's  mask  of  allowable  CPUs

when  it  is  spawned.   Sockets  are  temporarily

assigned  to  svc_pools  only  briefly  while  calls

are  being  decoded.   These  choices  ensure  that

cachelines do not travel off-node, at least for the

common case on every call.

Part  of  this  solution  was  to  move  the  code

which handled  the detection and  disconnection

of idle temporary (i.e. connected TCP) sockets,

from the main call  path  to  a  timer  which runs

every  few  minutes.   Previously  the  aging

- 4 -



algorithm  depended  on  maintaining  a  global

LRU list  of  temporary  sockets.  Replacing this

with  a  mark-and-sweep  algorithm  allowed  the

main call path to be shorter and simpler, to hold

the  lock  for  shorter  times,  and  to  avoid  a  list

manipulation  which  will  dirty  additional

cachelines.

Another  hotspot  is  the  nfsdstats  structure,

which  contains  various  global  NFS  statistics

counters.  The  cachelines  of  this  structure  are

written  several  times  per  call,  but  the  most

egregious  of  these  instances  is  the  nfsd  thread

statistics.   Twice  per  call,  each  nfsd  thread

acquires  a  global  spinlock  (another  contention

point) before updating a set of counters.  Those

counters  are  meant  to provide a  sysadmin with

enough information to be able to manually tune

the number of nfsd threads; in practice they have

proven difficult for real sysadmins to use.  The

short  term  solution  was  to  remove  those

statistics;  the  long  term  solution  would  be  to

replace them with an automatic control loop.

For read workloads, the global spinlock which

protects  the  readahead  parameters  cache  hash

index is a contention point; the solution was to

split the lock into multiple locks indexed by the

low bits of the hash value.

Another contention  point is the spinlock which

protects the ip_map cache hash table.  This hash

table  is  looked  up  on  every  call;  with  many

client IP addresses and the  ip_map hashing bug

mentioned  below  (see  Mountstorm)  this

spinlock  can  use  a  significant  amount  of  CPU

time.   Because  the  lookup  returns  the  same

object almost every time for  a given client,  the

solution  was  to  avoid  the  lookup  entirely  by

caching that pointer in the svc_sock.

NUMA Factors

A major  performance  factor,  at  least  on Altix

systems, was the tendency of the CPU scheduler

to  provide  poor  locality  of  reference  for  nfsd

threads.

Individual  threads  would  jump  from  CPU  to

CPU  without  any  apparent  regard  for  whether

the  per-thread  data  would  be  present  in  CPU

caches.

Threads would send NFS replies (which usually

involves  multiple  trips all the way down to  the

Ethernet  driver)  without  any regard for the I/O

access  latency  between  the  CPU  doing  the

sending and the  NIC.   On  a  NUMA  machine,

this  is  an  important  factor  which  affects  the

amount of CPU time spent waiting for PCI I/O

to  complete.   The  ideal  situation  is  always  to

send  replies  from  a  CPU  on  a  NUMA  node

nearest to where the NIC is located.

The  splitting  of  svc_serv into  multiple

svc_pools  described  above  is  also  the  solution

for these problems.  To reduce contention on the

svc_pool locks, the nfsd threads are made node-

specific by setting the mask of allowable CPUs

for each thread when it's  spawned.  If the NICs

are configured so that their interrupts are bound

to  a  single  local  CPU,  the  combination  of  the

two restrictions ensures that sending NFS replies

always occurs from a CPU close to the NIC.

Note that this requires a fixed binding of NIC

interrupts to CPUs.  This is always the case on

Altix  platforms,  but  on  i386  and  x86_64

platforms  the  irqbalanced daemon  needs  to  be

disabled  and  interrupts  manually  bound  to

CPUs.   In SGI's experience,  irqbalanced is  too

eager  to  move  interrupts  between  CPUs,

harming  locality  and  generally  resulting  in

poorer performance;  disabling it has no known

ill effects.

Mountstorm

One  characteristic  of  cluster  job  management

systems is that they tend to result  in  extremely

bursty NFS mount traffic.  For example, when a

new job starts on 200 nodes the server will see

200 mount requests within a second or two.  For

the  cluster  job  to  proceed,  all  of  these  near-

simultaneous  mount  requests  must  complete,

successfully,  within   the  short  period  of  time

determined  by  the  clients'  TCP  connection

timeout  and  RPC  call  timeout.   We  call  this

condition a mountstorm.

To  handle  mountstorms,  we  want  to  take

advantage  of  the  server's  multiple  CPUs  and

process  as  many  as  possible  of  those  mount

requests  in  parallel.   Unfortunately,  Linux

serialises mount  requests in three places.

Firstly, the portmap daemon is single threaded.

- 5 -



Secondly, the rpc.mountd daemon is also single

threaded.  Normally that thread needs to perform

a blocking DNS reverse lookup and a blocking

DNS forward lookup for each connecting client.

A slow DNS server can be the limiting factor in

a mountstorm.   One workaround is to  enter  all

the clients' IP addresses in the server's /etc/hosts

file,  to  ensure the  hostname  lookups  are  local.

Another  workaround  (not  tried)  would  be  to

enable  hostname  caching  in  the  Linux  name

service caching daemon.

Thirdly,  we  have  the  problem  of  the  ip_map

cache  in  the  sunrpc  code.   This  is  a  data

structure, indexed by a hash table, used to map

client IP addresses to authentication information.

At mount time, the first incoming NFS call from

the new client fails to find a matching entry in

this data structure, and an upcall to rpc.mountd

is used to fill it in.

On older kernels (such as SLES9), a bug in the

sunrpc IP address hashing code on little-endian

64bit machines (such as Altix) results in nearly

all the  ip_map entries being hashed to the same

hash bucket, thus  effectively  reducing the hash

table to a linear list  [CAP05].   The hash table is

protected by a  global  spinlock,  so  searching is

single threaded.  When 2000 clients try to mount

the server at the same time, the machine appears

to  lock  up,  with  a  single  CPU  walking  this

enormous list and every other CPU spinning on

the  global  lock,  and  no  spare  CPU  for

rpc.mountd to run. 

The solution was to backport a simple patch to

fix the ip_map  hashing function from the Linux

mainline.   When  combined  with  the  /etc/hosts

workaround,  the  SGI  NAS  server  has

demonstrated the ability to handle a mountstorm

of 2000 clients.

After the first generation of SGI's Linux-based

NAS  solution  shipped,  discussions  [BRO06] on

the  Linux  NFS  mailing  list  showed  that  the

second problem – the single threaded nature of

rpc.mountd  –  could  be  solved  correctly  and

relatively  simply by  making rpc.mountd multi-

threaded.  The original expectation was that this

would  be  a  difficult  exercise,  because  writing

multi-threaded  RPC  servers  is  normally  quite

difficult.   However,  it  turned  out  that  merely

forking  multiple  rpc.mountd  processes  at   the

correct  point  in  the  main routine  (after

registering  the  service  socket  and  before

entering the main RPC loop) was sufficient.

This  was  because  the  rpc.mountd  code  keeps

almost all of it's state either in the kernel, or in

files which are read-mostly and already needed

to be file locked when accessed (to avoid racing

with programs like exportfs).  An nfs-utils patch

has been submitted and should appear in a future

release  of  the  SGI  NAS  server,  entirely

removing the need for the /etc/hosts workaround.

Duplicate Request Cache

The  Linux  NFS  server  contains  an

implementation  of  the  duplicate  request  cache

described  in  [CAL95],  [CAL99] and  [KIR06],  and

known in Linux as the repcache9.  Briefly, this is

a data structure which contains a binary copy of

the reply sent for every non-idempotent NFS call

received by the server (non-idempotent calls are

those  which  cannot  be  safely  repeated,  like

RENAME).  If, for some reason, a reply is sent

by the server and not received by the client, the

client  will  retry  the  call.   The repcache  allows

the  server  to  resend the  original  reply  without

trying to re-run the call, which would result in a

failure or other unexpected behaviour.

Normal operation of the repcache implies that

every  non-idempotent  call  involves  a  search  of

the repcache before dispatch, and an insert into

the  repcache  after  dispatch.   The  repcache  is

indexed by a small hash table, but that hash table

is protected by a single global spinlock.  Testing

using  a  synthetic  workload  comprising

exclusively  non-idempotent  calls  showed  that

this  spinlock  and  the  hash  table  are  global

hotspots.

Another problem with the repcache is that the

maximum number of entries is fixed at 1024, a

number  that  has  not  increased  since  it  was

chosen in the mid 1990s.  Consider that an entry

needs to remain in the repcache for at least one

client timeout period, which is typically at least

1.1   seconds (sometimes longer).   Thus  with  a

fixed  size  repcache  of  1024  entries,  any

9 Other implementations call this structure the dupcache.

- 6 -



workload  which  contains  more  than  about

1024/1.1 = 930 non-idempotent  calls per second

will flood the repcache and render it ineffective.

Note  that  the WRITE call  is  non-idempotent,

and  it's  not  unusual  for  parts  of  a  cluster

workload to have multiple thousands of WRITE

calls  per  second.   Furthermore,  the  expected

maximum  call  rate  for  the  SGI  NAS  server

would  be  nearly  105 calls/sec,  two  orders  of

magnitude  higher  than  the  maximum  rate  at

which the repcache is effective.

It  has  been  proposed (for  NFSv4  [EIS05]) that

NFS clients should not  emit  retries at all when

used  on  a  reliable  transport  such  as  TCP.

Furthermore,  TCP's  transport-level  retry

behaviour  is  known to  reduce  the incidence  of

duplicate  calls.   So  arguably,  one  possible

solution to the repcache's problems would be to

disable both  UDP support and the repcache,  or

(less drastically) to bypass the repcache for calls

over TCP.

This  author's  opinion  is  that  as  long  as  there

exist NFSv3 clients which retry over TCP or use

UDP,  the  repcache  will  be  necessary.   Client

retry  times  can  be  tuned  downwards,  and  any

number of effects (e.g. overload conditions) can

cause  service  times  to  rise  to  significant

fractions of a second.

The  solution  chosen  was  to  completely

modernise  the  repcache.   The  first  major  step

was automatic  expansion of the repcache under

non-idempotent load, triggered by the largest age

of a record falling below a fixed threshold.  The

problem of shrinking this data structure was not

addressed,  as  testing  showed  that  at  the

maximum expected call rate the memory usage

was only 16 MiB.

A further enhancement was expanding not just

the repcache but the hash table index too, using

a progressive lazy rehashing technique to spread

the  resizing  overhead  over  time.   However,

calculation  and  testing  showed  that  (perhaps

surprisingly)  the  dynamic  range  of  repcache

sizes was small enough that a single fixed hash

table size could be chosen which would result in

acceptable hash chain lengths for all loads.

The  second  step  was  splitting  the  repcache's

hash table spinlock into multiple spinlocks, one

per  hash  table  bucket,  in  order  to  reduce

contention.  As that spinlock also protected other

data structures, most notably the global LRU list,

those  structures  were  also  split  into  one  per

repcache hash bucket.

Finally,  the  repcache  hash  algorithm  was

tweaked so that the set of bits influenced by the

client IP address was distinct from the set of bits

influenced by the transmission id (XID).  With

NFS  server  NUMA-awareness,  calls  from  a

given  client  are  usually  only  ever  handled  by

CPUs in a single NUMA node; so this technique

reduces  contention and hotspotting of repcache

hash table buckets. 

CPU Scheduler Overload

On  stock  SLES9  configured  with  many  nfsd

threads, workloads which feature high NFS call

rates  from  many  clients  hit  an  unexpected

problem.   Each  incoming  call  causes  an  nfsd

thread  to  be  woken;  soon almost  every  nfsd  is

runnable but  only  a  few can  actually  run on a

CPU.  This results in very long CPU scheduler

queues.   For  example,  with  128  threads  and 4

CPUs,  a  load  average  of  over  120  has  been

measured.

These  long  runnable  queues  result  in  the

SLES9  CPU  scheduler  using  up  the  last  few

percent  of  available  CPU  time.   Also,  nfsd

threads are scheduled preferentially to userspace

tasks.   The  system  eventually  enters  a  state

where nfsd  threads  run normally  but  userspace

programs  are  not  scheduled  for  minutes  at  a

time.

In this state, existing NFS clients still have their

calls  serviced,  but  because  portmap  and

rpc.mountd  cannot  complete  TCP  connection

setup  by  calling  accept,  no  new  clients  can

mount the server.

The  solution  was  a  simple  tweak  to  limit  the

number  of  nfsd  threads  woken  but  not  yet

running.   The  sunrpc  code  tracks  how  many

threads are in this state and does not attempt to

wake new threads if that number exceeds a small

threshold, currently 5 per svc_pool.  The result is

a load average under load of 5 to 6 per NUMA

node,  and  a  complete  absence  of  the  overload

condition.

- 7 -



NFS Over UDP

Testing  streaming  read  and  streaming  write

workloads showed that NFS over UDP is limited

to  about  145 MiB/s, or  the equivalent of  about

one and a half Gigabit Ethernet  link's  worth of

throughput, no matter how many cards are used.

Discussions  and  experiment  showed  that  the

limit is due to the NFS server using only a single

global UDP socket for all NFS/UDP traffic.  By

contrast, NFS/TCP uses a single socket for each

client connection.

An  nfsd  thread  needs  exclusive  access  to  the

socket  while  receiving  and  sending  data.   In

particular  when  sending  the  thread  holds  the

svc_sock lock while using the global UDP socket

as an sk_buff queue for constructing a datagram.

So only one thread at a time can run the entirety

of  the  network  stack  send  path:  waiting  for

socket send queue space, routing (done for every

UDP  datagram),  IP  fragmentation,  and  thirty-

odd calls to the driver's hard_start_xmit routine.

During the course of this work, a solution was

coded and tested  for  this  problem.   Ultimately,

the  solution  could  not  be  shipped  in  the  SGI

NAS server because it required a change in code

which  cannot  be  upgraded  with  a  replacement

kernel module.

The  solution  is  to  use  multiple  UDP sockets.

Linux already has an option to bind a socket to a

network  device.   This  allows  multiple  sockets

using  the  same  UDP  port  to  co-exist  and

function normally, as long as they are bound to

different  devices (plus  one  socket  which is  not

bound to  any device).  When a UDP datagram

arrives  on  a  card,  the  network  stack  tries  to

choose a UDP socket bound to that card before

falling back to the unbound socket.  The network

stack  also  provides  a  notifier  callback  chain

which the NFS server can use to discover what

devices exist,  even if they are created after  the

NFS server initialises.  The solution uses these

two existing features, and creates a device-bound

UDP  socket  on  the  NFS  port  for  every  non-

loopback network device.

Unfortunately,  device  binding  affects  the

network stack's outbound routing decision10,  so

10 As pointed out by Neil Brown.

using  these  same  sockets  to  send  NFS  replies

will fail if the server uses asymmetrical routing.

The  solution  is  to  use  a  different  set  of  UDP

sockets  for  sending,  one  per  CPU.   A  socket

option,  UDP_SENDONLY,   was  added;  this

option prevents a socket from being entered into

the UDP socket hash table which is used when

receiving UDP datagrams.  As a result the socket

can  be  used  to  send  datagrams  (without  any

effect  on  the  routing  decision)  but  not  receive

them.

Testing  showed  that  this  solution  provides

almost  the  same  throughput  as  a  TCP-based

solution, breaking the 145 MiB/s limit.

However, given the multitude of other problems

with using UDP as a transport protocol for NFS,

this  is  not  necessarily  a  good  thing.   SGI

continues to recommend that customers use TCP

where possible.

Write Performance To XFS

When all these NFS changes were being tested

for  performance,  one  workload  remained  too

slow: streaming writes to a small number of files

on disk.  After much testing this was eventually

tracked down to a  bug in the XFS code which

affected  overall  performance  only  when  the

filesystem was written to via NFS, not for local

I/O.

The  XFS  writepages  code  was  incorrectly

interpreting the  flag  passed to  it  from the VM

which indicated whether it could block.  So, on

write congestion kupdated would block in XFS,

while  holding  the  i_sem lock  on  one  of  the

files  being  written.   This  prevents  nfsd  (when

handling the WRITE RPC) from taking i_sem
to add new dirty pages to the page cache.  As a

result, the server either reads from the network,

or writes to the disk, but  cannot do both at the

same time,  which  effectively  halves  NFS write

performance.   The  XFS  team  have  solved  this

problem.

Tunings

Several  kernel  tunables  were  found  to  have

beneficial effects for NFS serving.

� Maximum TCP  socket  buffer  sizes  (the  3rd

- 8 -



number  of  net.ipv4.tcp_rmem)  were

increased  to  512  KiB,  so  a  large  window

scale is chosen during TCP connection.

� Interrupt  coalescing  parameters  (ethtool  -C

rx-usecs  rx-frames)  for  the  tg3  Gigabit

Ethernet  driver  were  changed  to  cause  an

interrupt about every 20 Ethernet frames (on

older kernels, the default was to interrupt the

CPU for every frame).  This reduces softirq

CPU usage at high packet rates.

� The  parameters vm.dirty_background_ratio

and  vm.dirty_writeback_centisecs were

decreased to 10% and 50 cs, so that the VM

will begin writing dirty pages to disk earlier.

The  goal  is  to  improve  streaming  write

performance  by  reducing the  time  taken  to

service COMMIT calls (because some or all

of the unstable data has already been written

to disk).

� The  async  export  option  was  explored,  in

conjunction  with  the  above  VM  parameter

changes, in an attempt to improve streaming

write  performance.   It  does  improve

performance, but unfortunately at the cost of

increasing  the  chances  of  out-of-memory

deadlock  if  the  client  has  more  RAM  than

the  server.   Furthermore,  it  breaks

documented  NFS  semantics  and  is  a  data

loss risk.

� The  no_subtree_check export  option  was

used.  This option is documented as having a

security  impact  (allowing a  skilled  attacker

to synthesise filehandles for files which they

should not be able to access).  However, the

security  issue  does  not  apply  if  all  export

points  are  the  roots  of  filesystems,  a

constraint which happened to be true for SGI

NAS  systems.   Conversely,  on  workloads

which  use  very  large  numbers  of  files  and

directories,  such  as  the  standard  SPECsfs

benchmark, using no_subtree_check can save

up to 10% CPU.

� The  ARP  code  was  configured  only  to

respond  to  ARP requests  from  the  NIC  on

which  the  request  was  received

(net.ipv4.conf.ethN.arp_ignore=1  and

...arp_announce=2).  This  avoids  the

problem  seen  on  shared  media  network

configurations,  of  streams  of  packets  from

clients  jumping  randomly  between  NICs,

destroying the NUMA locality of reference.

� The  maximum  ARP  cache  size  was

increased  to  2048  to  prevent  the  table

overflowing at 1024 unique MAC addresses.

Performance Results

The results from two tests give some idea of the

performance improvements which result from all

the above changes.  The Before case is the stock

SLES9 SP2 kernel (plus some tg3 driver patches

which  appeared  in  SP3);  the  After  case  is  the

same kernel with all the above patches applied.

Both kernels were tuned as described above.

The first test is a multiple streaming reads from

a separate file per client, from the server's page

cache.  The transport protocol was TCP and the

block size was 32KiB (the maximum block size

supported  by  the  stock  SLES9  kernel).   The

configurations tested  used matched numbers  of

CPUs,  tg3  Gigabit  Ethernet  NICs,  and  Origin

O350  test  clients,  and  were  achieved  by

progressively  connecting  A350  bricks  with

NUMAlink.   The  server  and  clients  were

connected  via  a  Foundry  FastIron  switch;

Ethernet  bonding  was  not  used.   Data  was

collected  using  SGI's  Performance  Co-Pilot

[PCP].   Two  metrics  are  shown:  aggregate

throughput in MiB/s

and CPU usage (system plus interrupt)

- 9 -

Fig 1: Streaming read throughput

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4  6  8

T
hr

ou
gh

pu
t, 

M
iB

/s

Number of CPUs, NICs and clients

Before
After

Theoretical Max



The  most  obvious  feature  is  that  NUMA-

awareness  and  reduction  of  global  contention

points  have  significantly  increased  the

throughput  and  reduced  the  CPU usage  for  all

the  tested  configurations.   In  particular,

throughput is now much closer to the theoretical

maximum.  But  note that  throughput scaling is

still not linear; work remains to be done in this

area.

The  second  test  uses  a  synthetic  load

generating program to simulate varying numbers

of clients each performing a recursive directory

traversal    over  a  tree small  enough to  fit  into

memory11.  The simulated clients reproduce the

pattern  of  NFS  calls  recorded  for  the  rsync

program running on a Linux 2.4 client (although

this pattern is basically the same for the ls -lR or

find programs).

The  2.4  client  had poor  attribute caching and

did  not  use  READDIRPLUS,  so  this  workload

comprises  mostly  redundant  ACCESS  and

GETATTR calls.   Thus, one of the features the

test  measures  is  the  NFS  server's  ability  to

handle high call rates.

The test program uses multiple threads on each

client  machine.   Each  thread  has  its  own  IP

address and its  own TCP socket.  Thus the test

also  measures  the effect  on the NFS  server  of

varying numbers of connected TCP sockets and

client  IP  addresses  (but  not  MAC  addresses,

unfortunately).   The  threads  do  not  implement

rate  control,  but  issues NFS calls as fast as the

11 A copy of an i386 RedHat9 install tree, approximately

119000 inodes.

server can respond.  A real NFS client would do

some  additional  processing  between  calls,  so

each virtual client provides a load equivalent to

an estimated 2 to 4 real clients.

The server was a fixed configuration of 2 A350

bricks, with 4 CPUs and 4 tg3 Gigabit Ethernet

NICs.  The server and clients were connected via

a  Foundry  FastIron  switch;  Ethernet  bonding

was not used.  Four Origin O350 client machines

were  used,  and  the  number  of  virtual  clients

varied.

Two metrics are shown:  NFS calls per second

(IOPS)

and CPU usage (system plus interrupt).

The first visible feature of the graphs is that the

saturation  call  rate  for  the  After  case  is  about

twice that of the Before case.  This is partly due

to  NUMA-awareness  and  reduction  of  global

contention points, and partly due to reduction of

per-call  CPU  overhead.   This  same  effect  also

- 10 -

Fig 2: Streaming read CPU usage

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4  6  8

C
P

U
 u

sa
ge

, %

Number of CPUs, NICs and clients

Before
After

Theoretical Max

Fig 3: IOPS under rsync workload

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 20  40  60  80  100  120  140  160  180  200

rs
yn

c 
IO

P
S

Number of virtual clients

Before
After

Fig 4: CPU usage under rsync workload

 50

 100

 150

 200

 250

 300

 350

 400

 20  40  60  80  100  120  140  160  180  200

C
P

U
 u

sa
ge

, %

Number of virtual clients

Before
After



resulted  in  a  near  doubling  of  SPECsfs

benchmark  performance,  and  enabled  SGI  to

publish  SPECsfs  results  for  the  Altix  platform

for the first time.

The second visible feature is the CPU overload

phenomenon described earlier.  After 44 virtual

clients,  the  Before  kernel  uses  all  of  last  few

percent  of  CPU.   New  client  threads  cannot

mount because portmap and rpc.mountd are not

scheduled often enough; there is no data because

the userspace statistics collection daemon is not

scheduled often enough.  In contrast,  the After

kernel  handled  the  load  well  and  showed  no

signs of failure when the test was terminated at

208 virtual clients.

To illustrate the difference these patches made,

we  can  consider  two  competitive  NFS  server

evaluations  conducted  by  customers.   In  July

2005, customer “W” tested a system very similar

to  the  Before  kernel  with  200  clients  and  the

Linux  NFS  server  failed  to  achieve  either

throughput  or  IOPS  requirements  in  several

tests.   In  May  2006,  customer  “P”  tested  the

After  kernel  with  2000  clients  and  the  Linux

NFS server passed with flying colours.

Future Work

Version  3  of  the  NFS  protocol  does  not  have

any provision for the client to notify the server

of  the  lifetime  of  client-side  file  descriptors.

This  means  the  server  cannot  keep  actual  file

descriptors open for the files it exports to clients,

and must perform the equivalent of opening and

closing  a  file  descriptor  on  every  RPC from a

client.   For  a  streaming  write  workload,  this

results  in  XFS  being  forced  on  every  single

WRITE  call  to  truncate  the  speculative

allocations  it  makes  when  it  detects  streaming

writes. 

This has two negative effects.  Firstly, traffic to

the XFS log is greatly  increased, and for some

workloads  and filesystem layouts this  might  be

the performance limiting factor.  Secondly, with

multiple  streaming  writes  under  some

conditions, XFS' smart extent allocation may be

completely  defeated,  resulting  in  on-disk

fragmentation and reduced performance.

One obvious approach to solving this problem

is to change the NFS server's  existing cache of

read-ahead parameters to be an open-file cache.

Another alternative would be to extend the open

file data structure used for NFSv4.

For NFS writes, all incoming data is subjected

to two memory-to-memory copies.  The data is

first  copied  from  the  network  stack's  sk_buff

data  structures  into  the  nfsd  thread's  buffer

pages, then from there into the page cache.  The

first of these copies is unnecessary, and could be

eliminated by changing the interface between the

sunrpc  code  and  the  network  stack.   A  useful

side  effect  would  be  a  large  reduction  in  the

memory usage of each nfsd  thread,  as most  of

the  thread's  buffer  space  would  no  longer  be

needed.

To help deal with the mountstorm problem, the

portmap daemon could be made multi-threaded.

This will not be quite  so  simple as rpc.mountd

because  portmap  has  an  in-memory  database

and  so  does  not  currently  need  to  do   any

locking.   Also,  any  significant  changes  to

portmap run the risk of clashing with the IPv6

port being done by Groupe Bull. 

In  addition, rpc.mountd and the kernel sunrpc

code  could  be  modified  to  prime  the  ip_map

cache  when  handling  the  MOUNT  call,   thus

removing the need for the upcall to rpc.mountd

on the first FSINFO call.  This would eliminate

a  trip  through  rpc.mountd  from  the  mount

process,  and  avoid  the  burst  of  ip_map cache

misses   (and  any  contention  on  the  global

ip_map cache spinlock) during a mountstorm.

There  are  still  some  global  hotspots  which

could  be  fixed,  in  particular  the  nfsdstats

structure.

The  repcache  could  be  made  to  shrink  under

memory  pressure.   The  repcache  hash  table

index  could  be  made  smaller  by  default  and

allowed to expand under load, like the repcache

itself.

Acknowledgements

This  talk  describes  work  performed  at  SGI

Melbourne, from July  2005 onwards. Kernel  &

nfs-utils  patches  described  are  being submitted

from July 2006 onwards.

Thanks to code reviewers Neil Brown, Andrew

- 11 -



Morton,  Trond  Myklebust,  Chuck  Lever,

Christoph Hellwig and others.

Thanks  to  those  who  reviewed  drafts  of  this

paper, including James Peach, James Yarbrough,

Peter Leckie, Mitch Davis, Mark Goodwin.

References

[BRO06] Neil Brown et al, 2.4 vs 2.6, linux-nfs

mailing list, sourceforge.net, May 2006.

[CAL95] Brent Callaghan, Brian Pawlowski, Peter

Staubach, RFC 1813 NFS Version 3 Protocol

Specification,  Internet Engineering Task

Force, Jun 1995.

[CAL99] Brent Callaghan, NFS Illustrated,

Addison Wesley, ISBN 0201325705, 1999.

[CAP05], Don Capps, An interesting performance

thing?, linux-nfs mailing list, sourceforge.net,

14 Dec 2005.

[EIS05], Mike Eisler, Retries in NFSv4

Considered Harmful,

http://nfsworld.blogspot.com/, 19 Apr 2005.

[KEG06] Dan Kegel, The C10K Problem,

http://www.kegel.com/c10k.html.

[KIR06] Olaf Kirch, Why NFS Sucks, Proceedings

of the 2006 Linux Symposium, Aug 2006.

[LEV] John Levon, Phillipe Elie, at al, Oprofile

profiling tool for Linux,

http://oprofile.sourceforge.net/

[PCP] Silicon Graphics Inc., Performance Co-

Pilot, http://oss.sgi.com/projects/pcp/.

[SGI] Silicon Graphics Inc., Storage Page,

http://www.sgi.com/storage/

[SPE97] Standard Performance Evaluation Corp.,

SPECsfs benchmark,

http://www.spec.org/sfs97r1/

- 12 -


