
Multi-word Bitmask Library

This Bitmask library supports multi-word bitmask operations for applications
programmed in ’C’. It works in conjunction with recent Linux kernel support for
processor and memory placement on multiprocessor SMP and NUMA systems.
The cpuset library, being developed in parallel, depends on this bitmask library.

Author: Paul Jackson

Address: pj@sgi.com

Date: 23 Sept 2005

Copyright: Copyright c©2004-2006 Silicon Graphics, Inc. All rights
reserved.

i

mailto:pj@sgi.com

This document is written using the outline processor Leo, and version controlled using CSSC. It is
rendered using Python Docutils on reStructuredText extracted from Leo, directly into both html and
LATEX. The LATEX is converted into pdf using the pdflatex utility. The html is converted into plain
text using the lynx utility.

ii

http://webpages.charter.net/edreamleo/front.html
http://cssc.sourceforge.net/index.shtml
http://docutils.sourceforge.net
http://docutils.sourceforge.net/docs/rst/quickstart.html
http://webpages.charter.net/edreamleo/front.html
http://www.w3.org/MarkUp
http://www.latex-project.org
http://www.latex-project.org
http://www.adobe.com/products/acrobat
http://www.tug.org/applications/pdftex
http://lynx.isc.org

Table of Contents

1 What are bitmasks?

2 Ascii string representations

3 Calling, return and error conventions

4 Other bits always zero

5 Internal binary representation

6 Comparing these bitmasks with the Linux kernel

7 Bitmask Library Functions

iii

1 What are bitmasks?

Bitmasks provide multi-word bit masks and operations thereon to do such things as set and
clear bits, intersect and union masks, query bits, and display and parse masks.

The initial intended use for these bitmasks is to represent sets of CPUs and Memory Nodes,
when configuring large SMP and NUMA systems. However there is little in the semantics
of bitmasks that is specific to this particular use, and bitmasks should be usable for other
purposes that had similar design requirements.

These bitmasks share the same underlying layout as the bitmasks used by the Linux kernel to
represent sets of CPUs and Memory Nodes. Unlike the kernel bitmasks, these bitmasks use
dynamically allocated memory and are manipulated via a pointer. This enables a program to
work correctly on systems with various numbers of CPUs and Nodes, without recompilation.

There is a related cpuset library which uses the bitmask type provided here to represent
sets of CPUs and Memory Nodes. The internal representation (as an array of unsigned
longs, in little endian order) is directly compatible with the sched_setaffinity(2) and
sched_getaffinity(2) system calls (added in Linux 2.6).

2 Ascii string representations

There are two ascii representations of these multi-word bitmasks, and this library provides
display and parsing routines to convert both representations to and from the internal binary
representation of bitmasks.

The hex mask representation of a bitmask of size 64, with bits 1,5,6,11-13,17-19 set looks like:

00000000,000E3862

and the decimal list representation for this same value looks like:

1,5,6,11-13,17-19

2.1 Hex mask

The hex mask representation of multi-word bit masks displays each 32-bit word in hex (zero
filled), and for masks longer than one word, uses a comma separator between words. Words
are displayed in big-endian order most significant first. And hex digits within a word are also
in big-endian order.

1

The number of 32-bit words displayed is the minimum number needed to display all bits of the
bitmask, based on the size of the bitmask.

Examples of the hex word bitmask display format:

A mask with just bit 0 set displays as "00000001".

A mask with just bit 127 set dis-
plays as "80000000,00000000,00000000,00000000".

A mask with just bit 64 set dis-
plays as "00000001,00000000,00000000".

A mask with bits 0, 1, 2, 4, 8, 16, 32 and 64 set dis-
plays as
"00000001,00000001,00010117". The first "1" is for bit 64, the sec-
ond
for bit 32, the third for bit 16, and so forth, to the "7", which is for
bits 2, 1 and 0.

A mask with bits 32 through 39 set dis-
plays as "000000ff,00000000".

A 64 bit bitmask with bits 1, 5, 6, 11-13, and 17-
19 set displays as
"00000000,000E3862".

2.2 Decimal list

The decimal list representation of bitmasks represents them as a list of numbers and ranges of
numbers.

This format supports a space separated list of one or more comma separated sequences of ascii
decimal bit numbers and ranges, optionally modified by a stride operator.

Example of the decimal list bitmask display format:

0-4,9 # set bits 0, 1, 2, 3, 4, and 9

The stride operator is used to designate every N-th bit in a range It is written as a colon “:”
followed by the number N, with no spaces on either side of the colon.

Examples of the stride operator:

2

0-31:2 # the 16 even bits 0, 2, 4, ... 30

1-31:2 # the 16 odd bits 1, 3, 5, ... 31

0-31 # all 32 bits 0, 1, 2, ... 31

3 Calling, return and error conventions

As explained in more detail in the next section, all bitmask operations treat all bits, outside
of the originally specified bit range from 0 to size-1, as if they were zero.

Most of the operations change the bitmask referenced by the first argument, and return a
pointer to that bitmask, to allow convenient chaining of calls. However, be careful of such usage
- it’s really easy to code memory leaks this way. Each struct bitmask * pointer obtained
from a call to bitmask alloc needs to be free’d with a call (exactly one call) to bitmask free.

Bit positions in bitmasks are zero based (not one based). The bit positions in a bitmask of
size n are numbered 0 through n-1.

The Boolean functions return 1 (True) or 0 (False).

All but the first struct bitmask * pointers passed to any of the following operations are
read-only, declared as: const struct bitmask *.

The unary operations, such as bitmask complement, take two bitmask arguments, for the result
and the source, in that order. The same struct bitmask * pointer may be passed for both
arguments, in order to apply the operation in place.

The binary operations, such as bitmask and, take three bitmask arguments, for the result and
the two sources. Either source may be the same as the result. Indeed, all three arguments may
be the same pointer (though it is not clear what purpose that would serve).

The shift operations zero fill, whether left or right shifting.

The range operations follow ’C’ conventions in using closed left, open right intervals. That is,
the range of bit positions determined by the pair of integer arguments (i, j) includes exactly
all positions >= i and < j.

The bitmask next function returns the bitmask size if all bits are clear above the requested
position.

The bitmask first and bitmask last functions return the bitmask size if all bits are clear in the
bitmask.

3

Two masks are equal if they have the same set bits, regardless of whether they have the same
size.

Most of the operations or functions have no error return cases. They are defined so as to have
valid returns for all well formed arguments. Of course, if the arguments are not well formed,
then your application will probably exit with a Segmentation Violation. This is ’C’ after all.

The bitmask alloc function returns a zero pointer (NULL) and sets errno in the event that
malloc(3) fails. See the malloc(3) man page for possible values of errno (ENOMEM being
the most likely).

The bitmask displayhex, bitmask displaylist, bitmask parsehex, and bitmask parselist rou-
tines have more complex error and return conventions. See their detailed descriptions below.

4 Other bits always zero

All bitmask operations treat all bits, outside of the originally specified bit range from 0 to
size-1, as if they were zero. Even bits that might actually be present, due to the use of some
multiple of unsigned longs to represent the masks, are always zero, if they are outside the
specified number of bits in the mask.

The specified number of bits in a bitmask (its size) is established in the bitmask alloc call, and
never changed after that.

Note: In particular, observe that the bitmask copy function does not change the size of the
target bitmask. Hence the result of copying a large bitmask to a small one will often not
be equal to the original large bitmask - rather it will be shortened (to the smaller target
size, with bits above that size zero’d).

For example, if you invoke:

struct bitmask *bmp = bitmask_alloc(17);
bitmask_setall(bmp);
bitmask_setbit(bmp, 21);

then the calls:

{
int x = bitmask_last(bmp);
int y = bitmask_isbitset(999);

}

4

will set x to 16 (the 17 bits are numbered 0 to 16), not 21 or some other higher number, and
they will set y to 0.

Requests to set bits outside those in the range specified in the initial bitmask alloc are ignored
and do not cause any error.

Requests to display or query bits outside those in the range specified in the initial bitmask alloc
always behave as if those bits were present and zero.

5 Internal binary representation

The ’C’ code that uses bitmasks sees only a struct bitmask * opaque pointer.

Hidden within the implementation of bitmasks, a struct bitmask is simply:

struct bitmask {
unsigned int size; /* size in bits of bit-

mask */
unsigned long *maskp; /* array of un-

signed longs */
};

This structure, and the variable length array of unsigned long words to which it points are
allocated using malloc(3) in the calls to bitmask alloc, and deallocated using free(3) in the
calls to bitmask free.

The maskp array of unsigned longs is arranged the same as the bitmask operands to the
sched_setaffinity(2) and sched_getaffinity(2) system calls (added in Linux 2.6). As of
this writing this is the same layout as is used by the kernels cpumask_t and nodemask_t types
and the task struct cpus_allowed and mems_allowed fields.

This representation places multiple unsigned long words in little endian order - low order word
first. Within each unsigned long, bits are addressed in ’natural C’ order, as 1<<n, for n
between 0 and 31 on 32 bit architectures, and between 0 and 63 on 64 bit architectures.

The implementation of this bitmask library reserves the right to extend or change this structure
and other details of this internal representation.

5

6 Comparing these bitmasks with the Linux kernel

This section compares this bitmask library with the implementation of bitmasks in the Linux
kernel, as of version 2.6.

Users of this library don’t actually need to understand these differences. However users already
familiar with kernel bitmasks may find this comparison helpful. And this comparison provides
an interesting way to present a few of the design tradeoffs that were made in creating this
library.

• This library implementation and API is optimized for ease of porting, ease of
use and flexible runtime behaviour.

• The Linux kernel bitmasks are optimized for optimum space and time perfor-
mance with compiled in fixed sizing of critical cpu and node masks.

• This library provides a larger, more complete and consistent set of bitmask
routines than the kernel bitmasks.

• All calls are actual subroutine calls, not gcc inline functions or macros.

6.1 Dynamic Memory

The representation of bitmasks in the Linux kernel, as of this writing, is essentially:

struct { unsigned long bitmask[N]; };

None of this uses memory allocated dynamically at runtime. Instead, all sizes are known at
compile time, and the compiler, along with some inline functions and macros, sizes each bitmask
to a hardcoded size, such as NR CPUS (number of CPUs which that kernel will support).

The current representation of bitmasks in this library, as noted in the previous section, is:

struct bitmask {
unsigned int size; /* size in bits of bit-

mask */
unsigned long *maskp; /* array of un-

signed longs */
};

Both this structure, and the array maskp it references, are dynamically allocated at runtime.

6

User programs, unlike a specific compilation of the kernel, usually avoid hardcoding the number
of CPUs and Memory Nodes which they support. It is for this simple reason that this library
uses dynamic memory allocation and runtime sizing, instead of the static allocation and compile
time sizing used by the kernel’s bitmask implementation.

6.2 Portable C

This library is implemented in Portable C, and presents an API that can easily be used in any
Portable C code. The implementing code is kept simple, portable and easy to develop and
maintain. The code is not optimized for critical inner loop performance requirements.

The Linux kernel bitmasks make essential use of gcc extensions in order to provide the compile
time sizing and optimum performance that is required for use in critical scheduler and allocator
loops.

6.3 Larger API

In order to make it easy to code bitmask operations, and reduce the costs of coding errors in the
applications using these routines, this library provides a larger, more complete and consistent
set of bitmask routines than the kernel bitmasks.

The kernel has some carefully optimized bitmasks routines for specific architectures, which
makes it a bit more difficult to keep their API as straightforward and consistent as this library.
And it avoids providing routines that don’t have an actual use in existing kernel code.

6.4 No macros or access to bitmask internals

The implementation of this bitmask library uses no gcc inline functions or preprocessor macro
functions of struct bitmask in the bitmask.h header file, and produces no code in the appli-
cation binary that knows the internals of struct bitmask.

Everything that looks like a function on bitmasks is a real function call into the libmask.so
library. The struct bitmask structure is declared in bitmask.h without its members defined,
as simply:

struct bitmask;

The reason that there are no such macro or inline functions in the bitmask.h header file is that
without access to the internals of the bitmask structure, they could not be compiled.

7

There are two reasons that the internals of the bitmask structure are not accessible in the
bitmask.h header.

One reason is to discourage code that looks inside a structure that is intended to be opaque.
This reduces the risk that some future change to the implementation internals of this structure
will adversely impact existing application binaries using this API.

The other reason is to discourage bitmask structure assignment, which reduces the risk of
memory corruption bugs from misuse of this structure.

Code such as the following will not compile, but it if did, would typically result in memory
corruption.

#include <bitmask.h>

struct bitmask *bmp1 = bitmask_alloc(32);
struct bitmask *bmp2 = bitmask_alloc(32);

*bmp2 = *bmp1; /* 1. Doesn’t compile -
if it did, would be unsafe assignment */
bitmask_free(bmp1); /* 2. Free it once */
bitmask_free(bmp2); /* 3. Free it twice: corrupted malloc heap */

At step [1], the dynamic memory allocated to bmp2 is lost (memory leak) and the dynamic
memory allocated to bmp1 is now referenced twice. At step [2], the memory for bmp1 is free’d
once. At step [3], it is free’d again, resulting in a corrupt malloc heap, and likely an obscure
crash later in the program execution.

Assigning the pointers, and passing them as arguments, is acceptable, so long as you are
careful not to cause a memory leak by assigning to a struct bitmask * pointer that is currently
referencing some other dynamically allocated bitmask which should first be freed via that
pointer.

#include <bitmask.h>

struct bitmask *bmp1;
struct bitmask *bmp2 = bitmask_alloc(32);
extern void f(struct bitmask *);
bmp1 = bmp2; /* ok */
f(bmp1); /* ok */

Both of the above reasons reflect the same basic design tradeoff to prefer robust, portable code
over aggressive extraction of performance.

8

The above choices also enable application binaries to continue working correctly in the face of
internal changes to the bitmask library, without requiring the applications to be recompiled.
This is quite unlike the Linux kernel, which is routinely recompiled in its entirety, as a single
unit, anytime any part of it changes.

7 Bitmask Library Functions

The following inclusion and linkage provides access to the bitmask API from ’C’ code:

#include <bitmask.h>
/* link with -lbitmask */

The following functions are supported in the ’C’ bitmask API. In some cases, ’C’ equivalent
code is shown, as if bitmasks were a single unsigned long, even though they are packaged in a
structure, referenced by a pointer, and actually contain an array of perhaps multiple unsigned
longs.

None of these operations other than bitmask alloc allocate new bitmasks, and none of them
other than bitmask free free existing bitmasks.

None of these operations other than bitmask alloc set or change the size of a bitmask.

The following functions are supported in the ’C’ bitmask API:

• Allocate and free struct bitmask *

– bitmask alloc (n) - Allocate a new struct bitmask with a size of n bits

– bitmask free (struct bitmask * bmp) - Free struct bitmask

• Display and parse ascii string representations

– bitmask displayhex (buf, len, bmp) - Write hex word representation of bmp to buf

– bitmask displaylist (buf, len, bmp) - Write decimal list representation of bmp to buf

– bitmask parsehex (buf, bmp) - Parse hex word representation in buf to bmp

– bitmask parselist (buf, bmp) - Parse decimal list representation in buf to bmp

• Basic initialization operations

– bitmask copy (bmp1, bmp2) - Copy bmp2 to bmp1

– bitmask setall (bmp) - Set all bits in bitmask: bmp = ˜0

– bitmask clearall (bmp) - Clear all bits in bitmask: bmp = 0

9

• Interface aids for kernel sched {set,get}affinity system calls

– bitmask nbytes (bmp) - Length in bytes of mask - use as second argument to these
calls

– bitmask mask (bmp) - Direct pointer to bit mask - use as third argument to these
calls

• Unary numeric queries

– bitmask nbits (bmp) - Size in bits of entire bitmask

– bitmask weight (bmp) - Hamming Weight: number of set bits

• Unary Boolean queries

– bitmask isbitset (bmp, i) - True if specified bit i is set

– bitmask isbitclear (bmp, i) - True if specified bit i is clear

– bitmask isallset (bmp) - True if all bits are set

– bitmask isallclear (bmp) - True if all bits are clear

• Single bit operations

– bitmask setbit (bmp, i) - Set a single bit i in bitmask

– bitmask clearbit (bmp, i) - Clear a single bit i in bitmask

• Binary Boolean operations: bmp1 op? bmp2

– bitmask equal (bmp1, bmp2) - True if two bitmasks are equal

– bitmask subset (bmp1, bmp2) - True if first bitmask is subset of second

– bitmask disjoint (bmp1, bmp2) - True if two bitmasks don’t overlap

– bitmask intersects (bmp1, bmp2) - True if two bitmasks do overlap

• Range operations

– bitmask setrange (bmp, i, j) - Set bits of bitmask in specified range [i, j)

– bitmask clearrange (bmp, i, j) - Clear bits of bitmask in specified range

– bitmask keeprange (bmp, i, j) - Clear all but specified range

• Unary operations: bmp1 = op(bmp2)

– bitmask complement (bmp1, bmp2) - Complement: bmp1 = ˜bmp2

– bitmask shiftright (bmp1, bmp2, n) - Right shift: bmp1 = bmp2 >> n

– bitmask shiftleft (bmp1, bmp2, n) - Left shift: bmp1 = bmp2 << n

• Binary operations: bmp1 = bmp2 op bmp3

10

– bitmask and (bmp1, bmp2, bmp3) - Logical and of two bitmasks: bmp1 = bmp2 &
bmp3

– bitmask andnot (bmp1, bmp2, bmp3) - Logical andnot of two bitmasks: bmp1 =
bmp2 & ˜bmp3

– bitmask or (bmp1, bmp2, bmp3) - Logical or of two bitmasks: bmp1 = bmp2 |
bmp3

– bitmask eor (bmp1, bmp2, bmp3) - Logical eor of two bitmasks: bmp1 = bmp2 ˆ
bmp3

• Iteration operators

– bitmask first (bmp) - Number of lowest set bit (min)
– bitmask next (bmp, i) - Number of next set bit above given bit i

– bitmask rel to abs pos (bmp, n) - Absolute position of nth set bit
– bitmask abs to rel pos (bmp, n) - Relative position amongst set bits of bit n
– bitmask last (bmp) - Number of highest set bit (max)

7.1 bitmask alloc

struct bitmask *bitmask_alloc(unsigned int nbits);

Allocate a new struct bitmask with a size of nbits bits.

This is the only bitmask function that creates bitmasks.

Each struct bitmask * pointer obtained from a call to bitmask alloc needs to be
free’d with a call (exactly one call) to bitmask free.

The bitmask alloc function uses the underlying malloc(3) routine to obtain mem-
ory. It returns a zero pointer (NULL) and sets errno in the event that malloc(3)
fails. See the malloc(3) man page for possible values of errno (ENOMEM being
the most likely).

The size of a bitmask, as specified in the bitmask alloc call that created it, is never
changed by subsequent bitmask operations. Bits at positions outside the range zero
to nbits-1 are always zero. Attempts to modify bits at such positions are always
ignored, doing nothing, successfully.

For portable code, when allocating a bitmask to handle the CPUs or Memory
Nodes on a system, the number of CPUs or Nodes should not be hardcoded, but
obtained dynamically from the system. The routines cpuset_cpus_nbits() and
cpuset_mems_nbits() in the related libcpuset library provide the maximum num-
ber of CPUs or Memory Nodes that the operating system was compiled to support.
Use these values to size CPU and Memory Node bitmasks for calls into the libcpuset
library.

11

7.2 bitmask free

void bitmask_free(struct bitmask *bmp);

Free a bitmask struct.

This call frees the memory assigned to a bitmask. It is the only function that frees
bitmasks. The struct bitmask *‘ pointer must have been returned by a previous
call to bitmask alloc. The memory is not cleared. If bmp is NULL, no operation
is performed.

Each struct bitmask * pointer obtained from a call to bitmask alloc needs to be
free’d with a call (exactly one call) to bitmask free.

bitmask free returns no value.

7.3 bitmask displayhex

int bitmask_displayhex(char *buf, int len, const struct bitmask *bmp);

Write hex mask representation of bmp to buf.

7.4 bitmask displaylist

int bitmask_displaylist(char *buf, int len, const struct bitmask *bmp);

Write decimal list representation of bmp to buf.

7.5 bitmask parsehex

int bitmask_parsehex(const char *buf, struct bitmask *bmp);

Parse hex mask representation in buf to bmp.

7.6 bitmask parselist

int bitmask_parselist(const char *buf, struct bitmask *bmp);

Parse decimal list representation in buf to bmp.

12

7.7 bitmask copy

struct bitmask *bitmask_copy(struct bitmask *bmp1, const bitmask *bmp2);

Copy the value of bitmask bmp2 to bitmask bmp1. If the size of bmp1 is smaller
than bmp2, then bits set in bmp2 beyond what fit in bmp1 are lost in the bmp1
copy. If the size of bmp1 is larger than bmp2,then bits set in bmp1 beyond what
bmp2 specifies are cleared. The target bitmask bmp1 is not resized in any case.

Returns the pointer bmp1.

7.8 bitmask setall

struct bitmask *bitmask_setall(struct bitmask *bmp);

Sets all bits in bitmask bmp.

Returns the pointer bmp.

7.9 bitmask clearall

struct bitmask *bitmask_clearall(struct bitmask *bmp);

Clears all bits in bitmask bmp.

Returns the pointer bmp.

7.10 bitmask nbytes

unsigned int bitmask_nbytes(struct bitmask *bmp);

Returns the length in bytes of a bitmask.

This is useful as the second argument to systems calls (new in Linux 2.6) sched_setaffinity(2)
and sched_getaffinity(2)

Example:

/* Bind current process to the 3rd CPU (num-
ber 2) of a possible 64 CPUs */

struct bitmask *bmp = bitmask_alloc(64);

13

bitmask_setbit(2);
if (sched_setaffinity(0, bitmask_nbytes(bmp), bit-
mask_mask(bmp)) < 0)

... handle error ...
bitmask_free(bmp);

7.11 bitmask mask

unsigned long *bitmask_mask(struct bitmask *bmp);

Returns a direct pointer to the unsigned long mask array of a bitmask.

This is useful as the third argument to systems calls (new in Linux 2.6) sched_setaffinity(2)
and sched_getaffinity(2)

See also the example for bitmask nbytes, above.

7.12 bitmask nbits

unsigned int bitmask_nbits(const struct bitmask *bmp);

Size in bits of entire bitmask.

7.13 bitmask weight

unsigned int bitmask_weight(const struct bitmask *bmp);

Hamming Weight: number of set bits.

7.14 bitmask isbitset

int bitmask_isbitset(const struct bitmask *bmp, unsigned int i);

True if specified bit i is set. Always false if i >= bitmask nbits ().

14

7.15 bitmask isbitclear

int bitmask_isbitclear(const struct bitmask *bmp, unsigned int i);

True if specified bit i is clear. Always true if i >= bitmask nbits ().

7.16 bitmask isallset

int bitmask_isallset(const struct bitmask *bmp);

True if all bits from positions 0 to bitmask nbits () - 1 are set.

7.17 bitmask isallclear

int bitmask_isallclear(const struct bitmask *bmp);

True if all bits from positions 0 to bitmask nbits () - 1 are clear.

7.18 bitmask setbit

struct bitmask *bitmask_setbit(struct bitmask *bmp, unsigned int i);

Set a single bit i in bitmask. Does nothing successfully if i >= bitmask nbits ().
Returns the bmp pointer passed in.

7.19 bitmask clearbit

struct bitmask *bitmask_clearbit(struct bitmask *bmp, unsigned int i);

Clear a single bit i in bitmask. Does nothing successfully if i >= bitmask nbits ().
Returns the bmp pointer passed in.

15

7.20 bitmask equal

int bitmask_equal(const struct bitmask *bmp1, const bitmask *bmp2);

True if two bitmasks are equal.

7.21 bitmask subset

int bitmask_subset(const struct bitmask *bmp1, const bitmask *bmp2);

True if first bitmask is subset of second.

7.22 bitmask disjoint

int bitmask_disjoint(const struct bitmask *bmp1, const bitmask *bmp2);

True if two bitmasks don’t overlap.

7.23 bitmask intersects

int bitmask_intersects(const struct bitmask *bmp1, const bitmask *bmp2);

True if two bitmasks do overlap.

7.24 bitmask setrange

struct bitmask *bitmask_setrange(struct bitmask *bmp, unsigned int i, unsigned int
j);

Set bits of bitmask in specified range [i, j).

16

7.25 bitmask clearrange

struct bitmask *bitmask_clearrange(struct bitmask *bmp, unsigned int i, unsigned
int j);

Clear bits of bitmask in specified range.

7.26 bitmask keeprange

struct bitmask *bitmask_keeprange(struct bitmask *bmp, unsigned int i, unsigned
int j);

Clear all but specified range.

7.27 bitmask complement

struct bitmask *bitmask_complement(struct bitmask *bmp1, const bitmask *bmp2);

Complement: bmp1 = ˜bmp2.

7.28 bitmask shiftright

struct bitmask *bitmask_shiftright(struct bitmask *bmp1, const bitmask *bmp2, un-
signed int n);

Right shift: bmp1 = bmp2 >> n.

7.29 bitmask shiftleft

struct bitmask *bitmask_shiftleft(struct bitmask *bmp1, const bitmask *bmp2, un-
signed int n);

Left shift: bmp1 = bmp2 << n.

17

7.30 bitmask and

struct bitmask *bitmask_and(struct bitmask *bmp1, const bitmask *bmp2, const bit-
mask *bmp3);

Logical and of two bitmasks: bmp1 = bmp2 & bmp3.

The bits that are set in the result bitmask, bmp1, are the intersection of the bits
that are set in the source bitmasks bmp2 and bmp3.

7.31 bitmask andnot

struct bitmask *bitmask_andnot(struct bitmask *bmp1, const bitmask *bmp2, const
bitmask *bmp3);

Logical andnot of two bitmasks: bmp1 = bmp2 & ˜bmp3.

The bits that are set in the result bitmask, bmp1, are the the bits that are set in
the source bitmask bmp2 but not in bmp3.

7.32 bitmask or

struct bitmask *bitmask_or(struct bitmask *bmp1, const bitmask *bmp2, const bit-
mask *bmp3);

Logical or of two bitmasks: bmp1 = bmp2 | bmp3.

The bits that are set in the result bitmask, bmp1, are the union of the bits that
are set in either source bitmasks bmp2 or bmp3.

7.33 bitmask eor

struct bitmask *bitmask_eor(struct bitmask *bmp1, const bitmask *bmp2, const bit-
mask *bmp3);

Logical eor of two bitmasks: bmp1 = bmp2 ˆ bmp3.

The bits that are set in the result bitmask, bmp1, are the symmetric difference (in
one or the other but not both) of the bits that are set in the source bitmasks bmp2
or bmp3.

18

7.34 bitmask first

int bitmask_first(const struct bitmask *bmp);

Number of lowest set bit (min).

7.35 bitmask next

unsigned int bitmask_next(const struct bitmask *bmp, unsigned int i);

Number of next set bit above given bit i.

7.36 bitmask rel to abs pos

unsigned int bitmask_rel_to_abs_pos(const struct bitmask *bmp, unsigned int n);

Return the number of the nth set bit. Calling bitmask rel to abs pos(bmp, 0)
is equivalent to calling bitmask first(bmp). Calling bitmask rel to abs pos(bmp,
bitmask weight(bmp) - 1) is equivalent to calling bitmask last(bmp).

7.37 bitmask abs to rel pos

unsigned int bitmask_abs_to_rel_pos(const struct bitmask *bmp, unsigned int n);

Return the relative bit position, amongst just the set bits, of the nth bit, if the nth
bit is set. If the nth bit is not set, return bitmask nbytes. For the bit positions
that are set, bitmask abs to rel pos is the inverse of bitmask rel to abs pos.

7.38 bitmask last

unsigned int bitmask_last(const struct bitmask *bmp);

Number of highest set bit (max).

19

	Table of Contents
	1 What are bitmasks?
	2 Ascii string representations
	2.1 Hex mask
	2.2 Decimal list

	3 Calling, return and error conventions
	4 Other bits always zero
	5 Internal binary representation
	6 Comparing these bitmasks with the Linux kernel
	6.1 Dynamic Memory
	6.2 Portable C
	6.3 Larger API
	6.4 No macros or access to bitmask internals

	7 Bitmask Library Functions
	7.1 bitmask_alloc
	struct bitmask *bitmask_alloc(unsigned int nbits);

	7.2 bitmask_free
	void bitmask_free(struct bitmask *bmp);

	7.3 bitmask_displayhex
	int bitmask_displayhex(char *buf, int len, const struct bitmask *bmp);

	7.4 bitmask_displaylist
	int bitmask_displaylist(char *buf, int len, const struct bitmask *bmp);

	7.5 bitmask_parsehex
	int bitmask_parsehex(const char *buf, struct bitmask *bmp);

	7.6 bitmask_parselist
	int bitmask_parselist(const char *buf, struct bitmask *bmp);

	7.7 bitmask_copy
	struct bitmask *bitmask_copy(struct bitmask *bmp1, const bitmask *bmp2);

	7.8 bitmask_setall
	struct bitmask *bitmask_setall(struct bitmask *bmp);

	7.9 bitmask_clearall
	struct bitmask *bitmask_clearall(struct bitmask *bmp);

	7.10 bitmask_nbytes
	unsigned int bitmask_nbytes(struct bitmask *bmp);

	7.11 bitmask_mask
	unsigned long *bitmask_mask(struct bitmask *bmp);

	7.12 bitmask_nbits
	unsigned int bitmask_nbits(const struct bitmask *bmp);

	7.13 bitmask_weight
	unsigned int bitmask_weight(const struct bitmask *bmp);

	7.14 bitmask_isbitset
	int bitmask_isbitset(const struct bitmask *bmp, unsigned int i);

	7.15 bitmask_isbitclear
	int bitmask_isbitclear(const struct bitmask *bmp, unsigned int i);

	7.16 bitmask_isallset
	int bitmask_isallset(const struct bitmask *bmp);

	7.17 bitmask_isallclear
	int bitmask_isallclear(const struct bitmask *bmp);

	7.18 bitmask_setbit
	struct bitmask *bitmask_setbit(struct bitmask *bmp, unsigned int i);

	7.19 bitmask_clearbit
	struct bitmask *bitmask_clearbit(struct bitmask *bmp, unsigned int i);

	7.20 bitmask_equal
	int bitmask_equal(const struct bitmask *bmp1, const bitmask *bmp2);

	7.21 bitmask_subset
	int bitmask_subset(const struct bitmask *bmp1, const bitmask *bmp2);

	7.22 bitmask_disjoint
	int bitmask_disjoint(const struct bitmask *bmp1, const bitmask *bmp2);

	7.23 bitmask_intersects
	int bitmask_intersects(const struct bitmask *bmp1, const bitmask *bmp2);

	7.24 bitmask_setrange
	struct bitmask *bitmask_setrange(struct bitmask *bmp, unsigned int i, unsigned int j);

	7.25 bitmask_clearrange
	struct bitmask *bitmask_clearrange(struct bitmask *bmp, unsigned int i, unsigned int j);

	7.26 bitmask_keeprange
	struct bitmask *bitmask_keeprange(struct bitmask *bmp, unsigned int i, unsigned int j);

	7.27 bitmask_complement
	struct bitmask *bitmask_complement(struct bitmask *bmp1, const bitmask *bmp2);

	7.28 bitmask_shiftright
	struct bitmask *bitmask_shiftright(struct bitmask *bmp1, const bitmask *bmp2, unsigned int n);

	7.29 bitmask_shiftleft
	struct bitmask *bitmask_shiftleft(struct bitmask *bmp1, const bitmask *bmp2, unsigned int n);

	7.30 bitmask_and
	struct bitmask *bitmask_and(struct bitmask *bmp1, const bitmask *bmp2, const bitmask *bmp3);

	7.31 bitmask_andnot
	struct bitmask *bitmask_andnot(struct bitmask *bmp1, const bitmask *bmp2, const bitmask *bmp3);

	7.32 bitmask_or
	struct bitmask *bitmask_or(struct bitmask *bmp1, const bitmask *bmp2, const bitmask *bmp3);

	7.33 bitmask_eor
	struct bitmask *bitmask_eor(struct bitmask *bmp1, const bitmask *bmp2, const bitmask *bmp3);

	7.34 bitmask_first
	int bitmask_first(const struct bitmask *bmp);

	7.35 bitmask_next
	unsigned int bitmask_next(const struct bitmask *bmp, unsigned int i);

	7.36 bitmask_rel_to_abs_pos
	unsigned int bitmask_rel_to_abs_pos(const struct bitmask *bmp, unsigned int n);

	7.37 bitmask_abs_to_rel_pos
	unsigned int bitmask_abs_to_rel_pos(const struct bitmask *bmp, unsigned int n);

	7.38 bitmask_last
	unsigned int bitmask_last(const struct bitmask *bmp);

